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Abstract. A consensus mechanism is a mission-critical component of a
blockchain, enabling the ability to securely append blocks to the block-
chain such that all participants agree on block history. The essential
properties of a blockchain network are security, scalability and decen-
tralization. To scale network throughput and uphold decentralization,
we present Parallel Ethereum (Ethpar), a hard fork of Ethereum that
provides proof-of-stake consensus with support for parallel blocks. Eth-
par leverages transaction commutativity to enable parallel blocks to be
added to a slot alongside the beacon block. The transactions are orga-
nized in a memgraph, where transactions form edges that connect to
each node corresponding to an address in its conflict list. Ethpar uses
a deterministic conflict resolution scheme to partition the memgraph
into commutative sub-components that does not require any additional
communication beyond synchronizing the memgraph among parallel val-
idators. To ensure that validators agree on the conflict lists for smart
contracts, Ethpar employs static analysis of smart contract source code
to produce the conflict lists without smart contract execution.

Keywords: Blockchain · Throughput · Commutativity · Consensus

1 Introduction

The engineering and business transformation accomplished in September 2022
(the “Merge”) to migrate Ethereum from proof-of-work (PoW) to proof-of-stake
(PoS) was nearly flawless in concept and execution. It was a grand experiment
with many benefits. On the two year anniversary of the Merge, we recognize
unintended consequences. PoS reduces electricity consumption [2], but cost and
complexity have distanced the network from solo stakers towards pools, where
financial resources are concentrated and yield is lower than a US Treasury bond
(3.2% vs 4.8%). Staker frustration with low yield leads to risky hypothecation,
detrimental to network security. A few of these pools make up more than half of
the total stake, causing centralization.

The desire to maximize “tips” to proposers has created a centralized market
for block building, where a few builders arbitrate the most profitable trans-
actions. The centralization of digital currencies and their regulation has been



explored [26,39], where fundamental vulnerabilities relating to centralization in-
clude the central authority being a single point of failure. The central authority
may also favor certain participants while discriminating against other partici-
pants with respect to rules, penalties, and transaction processing. The builders
must prioritize Maximal Extractable Value (MEV) to maximize profits, but this
is vulnerable to corruption since front-running and arbitrage are commonly used
to gain profits at the expense of honest participants.

The Merge itself did not address network performance, as neither throughput
nor latency were improved in September 2022. The quest for better performance
has spawned competitors to Ethereum, many of which support the Ethereum
Virtual Machine (EVM) with the intention of luring away Ethereum developers
and applications. Layer 1 is where the network earns fees and is most trusted by
users, but instead of meeting the competition, Ethereum has favored Layer 2 and
deprioritized Layer 1 solutions. Issues are difficult to address in an ecosystem
that waits years for improvement proposals to be reviewed and implemented. In
this paper, we present Parallel Ethereum (Ethpar), an unapologetic contribution
to decentralize, increase throughput and align incentives to revitalize Layer 1.

Various Layer 1 and Layer 2 solutions have been introduced to address scal-
ability. Sharding is a widely-accepted Layer 1 solution to scaling the blockchain
while maintaining security and decentralization [8,40]. Sadly, cross-shard trans-
actions require expensive synchronization protocols and communication between
the consensus committees across different shards. This figured in the decision by
Ethereum to extend the timeline for sharding years in the future.

The use of sidechains is a Layer 2 solution that enables large batch trans-
actions to be processed offchain, while cryptographic proofs secure them to the
main chain. However, Layer 1 is preferable because it provides a higher degree
of decentralization and security than Layer 2 solutions. This preference is vis-
ible in the market as the great majority of stablecoin value is held on Layer 1
blockchains.

Our vision is to use parallel computing techniques to scale Layer 1 Ethereum
while preserving the original philosophy of decentralization. We put this vision
into practice with Parallel Ethereum (Ethpar), a blockchain that encompasses
a hard fork of Ethereum to deliver proof-of-stake consensus with support for
parallel blocks. Ethpar leverages the untapped power of redundant validators
(i.e., validators not proposing a block) per slot by recruiting them as parallel
validators. Each parallel validator proposes a block in parallel with the beacon
block. Concurrency control for the parallel blocks is made possible by organizing
the mempool transactions in a data structure referred to as a memgraph. The
memgraph arranges transactions from the mempool into a graph structure where
wallet or smart contract addresses are nodes and transactions are edges. An edge
from address a1 to address a2 indicates a transaction that accesses both a1 and
a2. Commutativity is a property such that two transactions are commutative if
executing them in either order yields the same final state. As such, any edges in
a connected subgraph represent transactions that are non-commutative.



Fig. 1: Each slot contains 2n commuting blocks, executed in parallel

We observe that two commutative blocks can be published with no defined
ordering between them, so long as they both have a total ordering with any prior
or subsequent blocks with which they do not commute. This produces a ledger
where the computed state is deterministic, as all possible orderings for com-
muting blocks generate the same final output. Therefore, we devise an approach
that enables validators to publish parallel blocks at each slot n, so long as their
block commutes with every other block at slot n. To achieve this, we modify
the Ethereum validator scheduling such that at each slot n, 2m validators are
selected, each with a unique numerical rank r. This is referred to as the “parallel
committee” for slot n. Validators each propose a single block that commutes
with every other block at slot n. We achieve this by proposing a deterministic
conflict resolution scheme.

First, validators in a parallel committee directly peer with one another and
fully synchronize their memgraphs. To ensure that each validator has the same
view of the memgraph, we extend the functionality of the existing “seen” status
for transactions, which is updated during transaction propagation in the exe-
cution client. A transaction can only be inserted into the memgraph if it has
been seen by all selected validators. We call this new status “vetted” and track it
using a data structure that includes all the validators in the parallel committee.
This ensures that all validators in a parallel committee work with the same set
of transactions.

Given a parallel committee of validators, each with an identical copy of the
memgraph, a deterministic partitioning algorithm is used to find all groups of
non-commuting transactions. Each transaction within a group must be assigned
to the same block, to ensure commutativity between blocks within that slot. To
achieve this, validators are initially assigned transactions from the memgraph
using a deterministic function that maps transactions to a rank. This function is



designed such that no two validators are assigned the same transaction, however,
they may be assigned transactions within the same non-commuting group. To
resolve this, we use a straightforward conflict resolution scheme where the val-
idator with the lowest rank wins the entire set of non-commuting transactions.
Since this scheme is inherently unfair, we tailored the deterministic function to
map more transactions to higher ranks.

In this way, the Ethpar ledger becomes representative of a conflict-serializable
precedence graph. Blocks in slot n have a total ordering with respect to blocks in
slot n+1, and a partial ordering with respect to blocks in slot n. Any conflicting
transaction at slot n will end up in the same block, ensuring that the order of
conflicting transactions is the same in every possible execution. Validators utilize
a fast and efficient conflict resolution scheme to divide commuting transactions
based on their semantics. These conflicts are resolved before the block is built,
giving validators freedom to construct their block so long as it satisfies the
constraints of their agreed upon list of transactions. Our approach improves
upon sharding based approaches, as all parallel blocks are stored within the
same ledger, eliminating the need for costly two-phase locking schemes across
shards. Ethpar is not mutually exclusive with sharding; it can be implemented
in tandem with sharding to improve transaction throughput via parallel blocks
at each shard. Additionally, our approach encourages decentralization because
validators will ultimately obtain higher profits from building more parallel blocks
rather than joining centralized entities that focus on building the most lucrative
block possible.

2 Related Work

The demand for peer-to-peer networks that support acquisition or electronic
transfer of digital currencies and assets without a trusted third party has accel-
erated over the past few decades. Ethereum [4], introduced by Buterin in 2014,
delivers a blockchain with a built-in Turing-complete programming language
that enables versatile smart contracts such as multi-stage options contracts or
contracts with conditional dependencies on fluctuating prices. Ethereum origi-
nally employed proof-of-work as its consensus mechanism for reaching agreement
among peers on the history of transactions. Although Ethereum was initially cre-
ated to provide a superior platform for smart contracts, they later made a bold
move to address one of the fundamental criticisms of proof-of-work - the enor-
mous energy consumption required to achieve consensus. Ethereum changed from
proof-of-work to proof-of-stake on September 15, 2022 known as “the Merge.” In-
stead of using network computing power as the mediator of good behavior, proof-
of-stake requires a large amount of Ethereum’s digital currency Ether (ETH) to
be staked by every peer serving as a validator. The most severe misbehavior
penalty is the loss of the entire staked ETH, which outweighs the financial gains
that could be achieved by malicious peers engaging in foul play on the network.



2.1 Trilemma

The blockchain trilemma, introduced by Buterin in 2017 [33], claims that no
blockchain can simultaneously guarantee decentralization, security, and scala-
bility. At best, a blockchain can guarantee two of these elements at the cost of
sacrificing the third. Sharding is proposed as a solution to the trilemma [34], but
research on sharding as a solution is still ongoing [22]. A robust decentralized
blockchain permits a large number of participants to join the network. In this
scenario, security is more vulnerable since the likelihood of a bad actor joining
the network increases. Scalability is also hampered since the consensus mecha-
nism takes more time to accommodate the large number of participants. Security
ensures that the blockchain is tamper-resistant. Achieving security in a decen-
tralized environment is challenging because there are no guarantees that the
participants can be trusted. The solution for upholding security is to make the
cost of misbehaving so high that it disincentivizes dishonest participation. Proof-
of-work requires solving a cryptographic hash problem that is energy inefficient
to append a new block to the blockchain, reducing scalability. Proof-of-stake re-
quires the block proposer to hold a large monetary stake that is at risk of being
lost upon misbehavior. While proof-of-stake overcomes some scalability issues,
it threatens decentralization since the participants with the largest financial re-
sources are the ones controlling the network. Scalability enables the blockchain
to maintain a high transaction processing volume as network participation in-
creases. The consensus mechanism is one of the primary bottlenecks to achieving
scalability. Lowering the number of validators in proof-of-stake to reduce block
time reduces decentralization, while lowering the energy cost of proof-of-work to
speedup consensus weakens security. To ensure decentralization, nodes must be
able to participate in the network with only moderate resources. Many highly
scalable networks sacrifice decentralization because average users are unable to
keep up with the CPU demand of processing significant transaction volume. Our
solution mitigates this by partitioning the increased transaction throughput into
blocks that are easy to execute in parallel. In Section 3 we analyze additional
factors that affect decentralization, including staker pooling, and most severely,
MEV.

2.2 Transaction Throughput

Many blockchains aim to address the scalability aspect of the blockchain trilemma
by improving upon the low transaction throughput of initial blockchains. Bit-
coin’s average throughput is 8 transactions per second (TPS), while Ethereum’s
average throughput is 15 TPS [37]. Cardano [16] emerged in 2015 from peer re-
viewed blockchain research and obtains improved transaction throughput using
Ouroboros [19] as its proof-of-stake protocol. Ouroboros uses a leader election
process that randomly selects a leader with a probability that is proportional to
their stake. Cardano achieves scalability through Ouroboros’ ability to elect a
quorum of consensus nodes for an epoch in a decentralized way. The blockchain



itself is partitioned into shards, and a quorum of consensus nodes is elected con-
currently for each shard. Cardano’s maximum throughput is more than 1,000
TPS [3]. Ouroboros block finality is guaranteed after k blocks, where k is a
network parameter set to 2160, which occurs in 12 hours or less. Cardano dif-
fers from our approach in its use of a Layer 2 solution for parallelism. Cardano
achieves parallel transaction execution with hydra [5, 17], an off-chain protocol
for quickly settling transactions which are then merged back into the main chain.
In our approach, transactions are not settled off-chain. Instead, transactions are
partitioned based on their conflicts so that they can be published in parallel
blocks within the Layer 1 chain.

Solana [38], introduced by Yakovenko in 2018, incorporates proof-of-history
consensus combined with proof-of-stake to reduce messaging overhead and achie-
ves block finality in approximately 400 - 800 milliseconds. This is much faster
than Bitcoin’s 10 minute block finality and Ethereum’s 12 second block final-
ity [35]. Proof-of-history uses a cryptographically secure function to create a
sequence of hashes where data can be timestamped into the sequence by ap-
pending the data into the state of the function, establishing an order among
events. The verification of the history is embarrassingly parallel (i.e. a workload
that can be split into parallel sub-workloads in a straightforward manner) be-
cause the sequence of hashes can be divided into slices and each slice verified
in parallel on its own core. Solana’s average throughput is 877 TPS, with a
maximum theoretical throughput of 65,000 TPS [37].

Hedera Hashgraph [1], proposed in 2018 by Baird et al., aims to improve
transaction throughput and security with the hashgraph consensus algorithm.
The hashgraph consensus algorithm uses a gossip protocol combined with a
timestamp for each transaction to determine its consensus order. Proof-of-stake
is used to determine a node’s influence on consensus, which is proportional to
the amount of cryptocurrency that the node has staked. As the network grows,
the nodes are divided into separate shards so that consensus for each shard can
proceed in parallel. Hedera’s average throughput is 1,544 TPS, with a maximum
theoretical throughput of 10,000 TPS [37]. The time to reach block finality in
Hedera Hashgraph is 3-5 seconds [15].

SEI [21], proposed in 2022 by Sei Labs, uses parallelism in several aspects of
their design to reduce transaction latency and improve throughput. SEI uses a
Twin-Turbo consensus that begins optimistic block processing immediately after
the block is proposed, which runs concurrently with the prevote and precommit
steps. If the block is accepted, the data written to the cache during optimistic
block processing will be committed. If the block is rejected, the data in the
cache is discarded and future rounds for this block height will not use optimistic
block processing. Transactions are processed in parallel by mapping transaction
messages to the keys they need to access in the key-value store. Messages that
update different keys may be run in parallel. Dependencies between transactions
are determined through a Directed Acyclic Graph (DAG) of dependencies based
on the resources that each transaction needs to access. SEI’s throughput is ap-
proximately 12,500 TPS, and reaches block finality in 380 milliseconds [27]. This



approach differs from Ethpar in that it only enables parallelization of transac-
tions within the same block, and does not enable multiple blocks to be published
or executed concurrently.

Nightshade [29], originally proposed in 2019, upgraded to version 2.0 in 2024
which incorporates some of the latest advancements in zero-knowledge proofs.
Block producers and validators in Nightshade build a single blockchain referred
to as the main chain. Sharding is used to split the state of the main chain
into n shards. Nightshade focused their approach on state sharding since data
storage for the state grows over time even if the transactions per second remains
the same. The addition of stateless validation improves per-shard throughput in
Nightshade by enabling nodes to hold the state in memory.

Ethereum undertook another improvement when the Dencun upgrade was re-
leased on Mainnet on March 13, 2024 [24]. Dencun introduces proto-dankshard-
ing, a technique that benefits Layer 2 solutions by enabling Ethereum to store
large transaction data off-chain. Data blobs, which replace the transaction call-
data, enhance the disc space usage for validator nodes because transaction call-
data must be retained by the nodes forever and blob data can be pruned after
two weeks. Proto-danksharding is a stepping stone towards full danksharding. A
danksharding system will divide the Ethereum blockchain into shards, allowing
for the parallel execution of transactions in separate shards.

2.3 Multiple Block Proposers Per Slot - A Solution For Censorship

Any blockchain that enables free choice of transaction selection during block
building is vulnerable to censorship - the deliberate exclusion of a transaction
from a block. An adversary may be incentivized to prevent a transaction from
being included in a block if it will result in profit loss. In this case, the adversary
may need to bribe the block proposer with an amount larger than the fee of the
transaction to be censored to ensure that it is not included in a block. Neuder et
al. [23] recognize that the cost of censorship increases linearly with the number
of block proposers that have the option to include the transaction. The authors
present the concept of multiple proposers per slot. Each proposer independently
builds a payload, where identical transactions within each payload are permitted.
Fees for the doubly included transactions are divided among the proposers. The
payloads are concatenated together to form a single block. The authors outline
the various outcomes of the concatenated payloads and prioritize the cases when
assigning proposer boost for resolving a chain split.

Fox et al. [13] investigate censorship resistance in time sensitive auctions
hosted by proof-of-stake consensus. The block proposer receives the bids for
blocks of transactions with a tip for the proposer if the transactions are included
in the proposed block. The authors consider two designs. The first design con-
ducts the auction over multiple slots with a different proposer for each slot. The
analysis of this scenario shows sufficient censorship resistance when the num-
ber of blocks is larger than the number of bidders, which is undesirable under
the common case of requiring a short auction window. The second design is to
have multiple concurrent block proposers where a colluding bidder must bribe



multiple proposers to successfully censor a transaction. This yields improved cen-
sorship resistance because the cost of censoring a transaction increases linearly
with the number of block proposers. The innovations by Neuder et al. [23] and
Fox et al. [13] are similar to Ethpar in that they use multiple block proposers per
slot. The distinguishing feature of Ethpar is that the block payload for each pro-
poser contains unique transactions that commute with the transactions in other
payloads, enabling safe parallel execution that increases transaction throughput.

3 PoS and MEV

Maximal Extractable Value (MEV) is maximum obtainable profit that can be
achieved through a valid ordering of a subset of the pending transactions in the
block [20]. MEV previously was an acronym for Miner Extractable Value when
proof-of-work was prevalent, but changed to Maximal Extractable Value when
proof-of-stake and other consensus mechanisms became mainstream. Searchers
use bots to scan the blockchain transactions for MEV opportunities and submit
a profitable transaction with a high gas fee to the network when a sequence of
operations capitalizing on MEV is found. Decentralized Exchange (DEX) arbi-
trage, where a token is purchased on one exchange and immediately sold at a
higher price on a different exchange due to differing exchange prices, is a highly
sought after MEV opportunity. Front-running is an MEV opportunity where a
profitable transaction is detected and replicated with the frontrunner’s address
and a higher gas fee to obtain the MEV away from the original searcher. The
unethical practice of front-running has motivated solutions such as the Hash-
Mark-Set [6] algorithm, which associates a sequence order for each transaction
that prevents the strategic placement of a transaction ahead of another trans-
action for profit gains. A sandwich trade is another MEV opportunity where a
searcher uses a bot to scan the blockchain transactions for a large DEX trade
that is likely to increase the price of a trading pair. A searcher can then issue a
buy order before the large trade, and a corresponding sell order after the trade
to make a profit.

Ethereum’s move to proof-of-stake consensus has endured a greater negative
impact from MEV because the resulting effect is validator centralization. The
large ETH stake required to be a validator is an incentive for the average user to
join a staking pool to lower the costs to activate a set of validator keys. As the
staking pools grow larger, their MEV extraction capabilities improve, leaving
very little MEV on the table for solo validators to capitalize on. This further
incentivizes a user to join a large staking pool, leading to centralization among
the pool of validators. Proposer-Builder Separation is intended to mitigate the
impact of MEV by removing MEV extraction from validators and giving it to
new entities known as block builders that order transactions and build blocks.
MEV-Boost [36], developed by Flashbots, is an implementation of Proposer-
Builder Separation developed for Ethereum’s proof-of-stake. The block builders
create a transaction bundle that is blinded and has an associated fee. The blind
bundle is placed in an auction to be included in the beacon block. The validator



chooses the bundle with the highest fees and the block builder publishes the full
block body upon receiving the signed block proposal. Although the Proposer-
Builder Separation successfully took the block building and potentially corrupt
MEV opportunities away from the large validator staking pools, it reassigned
this task to the block builders. MEV extraction is still a centralizing force among
block builders since validators are blindly signing off on the block proposal with
the highest fee without concern for how this fee was obtained.

4 Motivation

The trend towards enhancing blockchain transaction throughput has incorpo-
rated parallelism in some aspect of consensus or block construction. Solana di-
vides the sequence of hashes forming the proof-of-history into slices for parallel
processing. While proof-of-history vastly improves the time and energy efficiency
of consensus in comparison to proof-of-work, it doesn’t address the scalability
concerns for block building. Cardano, Hedera Hashgraph, and full danksharding
divide the nodes into shards, enabling consensus and block processing to pro-
ceed concurrently for each shard. The drawback of sharding is that a transaction
that spans multiple shards requires expensive synchronization protocols such as
two-phase locking to ensure atomicity and isolation for its operations [8].

SEI uses a DAG to identify transaction dependencies and executes non-con-
flicting transactions in parallel within a block. The parallelism achievable in
SEI’s block processing is limited by block size. Although the block size is a con-
figurable parameter, increasing the block size results in increased bandwidth and
increased latency to propagate the block [9].

Our goal is to enhance block construction by enabling entire blocks to be
built in parallel, referred to as Parallel Ethereum (Ethpar). We use a similar
technique as SEI regarding the parallel execution of commutative transactions,
i.e. transactions with disjoint dependencies. The distinguishing feature of our
approach is that the use of parallel blocks has much better scalability potential
since block size is not a limiting factor for the number of transactions that can be
processed in parallel. A subset of validator nodes are randomly selected to serve
as a parallel validator for validation of the parallel blocks. Ethpar mitigates the
corruption involved in MEV extraction because the addition of the parallel val-
idator role incentivizes validators to prioritize transaction commutativity when
building blocks rather than MEV.

5 Parallel Ethereum (Ethpar)

The core of Parallel Etherem (Ethpar) is the memgraph. In the memgraph,
ledger addresses are represented as nodes, with transactions forming undirected
edges between any address they read or write, shown in Figure 2a. Intuitively,
this graph can quickly be partitioned into commutative sets of transactions by



selecting all unconnected components. The construction of the memgraph is pos-
sible because all transaction logic is known in advance of its execution, including
the storage variables and addresses the transaction may access.

Validators require knowledge of a transaction’s conflicts to insert it into the
memgraph. Furthermore, the conflicts must be accurate with respect to the state
of the ledger, as validators working in parallel will be unaware of state changes
made by each other during the block interval. To prevent state-changes from
creating unexpected transaction conflicts for validators working in parallel, we
define a transaction’s conflict list :

Definition 1. A transaction t′s conflict list is the set of all world state ele-
ments that may be read or written during the execution of t.

A transaction’s conflict list helps identify transactions that commute, regard-
less of the present, or future world state. In Ethereum, the world state refers to
the state of all accounts, each of which has an associated ether balance, and
storage [11].

Array accesses commute if they operate on unique indices, for example, writes
to array[x] and array[y] commute if x ̸= y. For this reason, each index of
an indexable storage object is treated as a unique world state element. This
provides finer granularity in identifying transaction conflicts. Local variables are
not included in the conflict list unless they are used to index a storage object. For
example, the conflict list for the statement array[x] = y would be {array[x]},
if x and y are local variables. Validators use the conflict list when inserting
transactions into the memgraph to ensure that the edges in the memgraph will
not change in response to state changes in the ledger. We explore a detailed
case related to this in Section 5.4, using the TetherToken and Uniswap smart
contracts.

Our definition for a transaction’s conflict list is inspired by EIP-2930 [10],
which introduced access lists. Access lists were introduced to optimize storage
accesses by including a list of storage keys that will be accessed by a transaction
during execution. However, the access list for a smart contract is dependent
upon the state of the ledger at the time of execution. For this reason, it is
not sufficient to represent all possible conflicts between transactions in parallel
blocks. Furthermore, computing the access list for a transaction requires the
transaction to be executed within a sand-boxed EVM. A transaction’s conflict
list can be computed more efficiently than its access list via static analysis of a
smart contract’s abstract syntax tree.

In Ethpar, A subset of validators are selected as a parallel validator committee
at each slot (Figure 3). Parallel validators cooperate to append 2m commuting
blocks at their assigned slot n. Each parallel validator is assigned a unique rank
r ∈ {1, 2m−1} in slot n. Rank 0 is reserved for the beacon block. Once a valida-
tor is selected as a parallel validator, it must open a peer-to-peer connection in
the execution client with the other parallel validators. By directly peering with
each other, parallel validators can construct a memgraph comprising transactions
that are guaranteed to be seen by the other parallel validators. This ensures that
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(a) Memgraph of Holesky network.

(b) Memgraph snippet. Each transaction is represented as an edge connecting the
addresses that it accesses. Each transactions is also assigned a validator rank. The
validator with the lowest rank wins all transactions in a connected component,
which represents a non-commutative set of transactions.

Fig. 2: Memgraph Overview.



Fig. 3: Parallel blocks overview. Each slot supports 2n commuting blocks, ap-
pended in parallel by a parallel validator committee.

parallel validators have a consistent view of the memgraph, enabling them to di-
vide transactions amongst themselves without additional communication beyond
that of synchronizing their memgraphs. Once validators have arrived at the same
view of the memgraph, they execute a deterministic algorithm to partition the
memgraph, ensuring that each validator receives a block of transactions that is
entirely commutative with every other validators’ block. If peer p1 and peer p2
are selected as validators for a particular slot, and p1 observes that p2 has an
inconsistent view of the memgraph, then p1 will recuse itself from block produc-
tion for the corresponding slot. This action protects the integrity of the block
produced by p2 in the circumstance that p2 did not observe an inconsistency
and proceeded with block production.

5.1 Managing a Transaction’s Vetted Status

In order for a parallel committee to partition the memgraph into commutative
sets, they must ensure that their respective views of the memgraph are identical.
To achieve this, we define the seen and vetted statuses for a transaction.

Definition 2. A transaction t is seen by peer p from the perspective of peer p0
if p propagates t to p0.

Definition 3. A transaction t is vetted by a parallel committee from the per-
spective of peer p0 if it has been seen by each validator in the parallel committee
from the perspective of peer p0.



A transaction is only inserted into the memgraph once it has obtained the
vetted status. This enables a shared view of the memgraph, which is necessary
for a deterministic conflict resolution that does not require any additional com-
munication to partition the memgraph.

The seen status for a transaction is updated during the execution client’s
transaction propagation to other peers. A transaction t1 is guaranteed to have
been seen by peer p1 if a peer receives t1 from p1. For this reason, a peer p2
marks t1 as “received” from p1 upon receiving the message of t1 by p1. Since
peer p1 needs confirmation that peer p2 received transaction t1, peer p2 must
send transaction t1 back to peer p1 to serve as an acknowledgement of receiving
transaction t1. Peer p2 marks transaction t1 as “sent” to peer p1 upon sending
t1 back to p1. The acknowledgement message ultimately doubles the number of
messages for transaction propagation by the execution client. However, since the
number of parallel validators is only a small subset of the total number of val-
idators the amount of additional messages generated does not cause congestion
in the execution client communication network.

Peer p2 considers transaction t1 as seen by peer p1 if 1) p1 has sent t1 to p2,
and 2) p2 has has sent t1 back to p1. The transaction propagation of t1 from
p2 to p1 reaches a stopping condition if both of these criteria are satisfied. The
seen transaction status for each peer is maintained in a hashmap, where the
peer is the key and the set of seen transactions is the value. Prior to transaction
selection, each peer consults this hashmap to determine which transactions have
been vetted (i.e. seen by all parallel validators). The vetted transactions are
inserted into the memgraph, where the transactions will then be partitioned for
the parallel validators transaction assignment.

5.2 Deterministic Conflict Resolution for Memgraph Commutative
Partitions

The transactions in the memgraph must be partitioned into N ranks (N equals
the number of parallel validators plus one for the beacon block validator). The
goal is to partition the transactions such that the transactions in each partition
are commutative with transactions in other partitions. Partitioning the mem-
graph for the parallel validators is achieved by using a breadth-first search on the
memgraph to find all connected components. Transactions within a connected
component are non-commutative with each other, but commute with transac-
tions in different connected components. A simple solution is to distribute the
connected components to the parallel validators such that they are assigned all
transactions from the connected component. The challenge is enabling the par-
allel validators to know which connected component they are assigned without
communication. We achieve this by computing the UnsignedBigInteger value
for the transaction hash and applying a modulo operation to distribute the
transactions into a specified number buckets that is greater than or equal to the
number of parallel validators plus one for the beacon block. Each parallel val-
idator is assigned to one or more buckets. A set of parallel validators contending
for each connected component is determined based on the assigned buckets of



the transactions for the connected component. The lowest rank validator from
the set of parallel validators wins the connected component.

Figure 2b shows an example of the memgraph with a view of five trans-
actions. Each transaction is connected to the the addresses in its access list.
The rank representing validator assignment for each transaction is listed next
to its transaction label. The transactions in a connected component are non-
commutative with each other and commutative with transactions in separate
components. The validator with the lowest rank wins the transactions in the
connected component, expressed in boldface print.

Although this strategy is deterministic and requires no communication among
the parallel validators, it is unfair. We incorporate two strategies to mitigate un-
fairness. First, the top N connected components based on number of transactions
are distributed to the N validators such that each validator is only assigned one
of the top N connected components to improve load balancing. The connected
components are sorted in descending order based on number of transactions,
where ties are broken by a function of the connected component’s transaction
hashes. Rank 0 through rank N − 1 are assigned one of the top N connected
components based on the sorted order.

Second, lower ranks are assigned more buckets. The number of buckets is
set to 2N+1, where N is the number of ranks (beacon block validator plus the
parallel validators). The first two buckets (bucket 0 and bucket 1) are assigned
to rank 0. Each subsequent bucket i is computed using Equation 1.

rank = ⌊log2 i⌋ − 1, i ≥ 2 (1)

For example, if there are two parallel validators, there are three ranks and
24 = 16 buckets. Rank 0 is assigned bucket 0 through bucket 3. Rank 1 is as-
signed bucket 4 through bucket 7. Rank 2 is assigned bucket 8 through bucket 15.
Rank 2 is initially assigned more transactions because it is most likely to relin-
quish transactions when contending with another parallel validator for a con-
nected component. After the validator has determined its assigned transactions,
it proceeds with the block building process using only transactions that it has
been assigned.

5.3 Parallel Block Execution

The memgraph naturally partitions pending transactions into commutative sets,
which are deterministically assigned to parallel validators. These commutative
sets lend themselves to concurrent execution. Although EVM support for con-
current execution is not widespread, multiple EVM instances can be instantiated
in parallel to process the blocks created by each parallel validator committee.

Figure 4 gives an overview of parallel block execution. Each parallel EVM
instance is instantiated from a copy of the world-state at the start of the slot,
and executes a single block. After each instance is finished, the resulting world-
states are sequentially merged. If two world-states contain updates to overlap-
ping storage variables, it means that their corresponding blocks are not actually



commutative, and one must be rejected. The block rejection process is further
described in Section 6.1.

Fig. 4: Parallel block execution

In this approach, each EVM acts as a concurrent process, writing changes to
a copy of shared data without regard for synchronization with other concurrent
processes. Afterward, those changes are committed back to the shared database.
This is similar to some Software Transaction Memory (STM) [28] or Optimistic
Concurrency Control (OCC) [14] implementations, which are well studied for
their benefit on multicore hardware when contention is low. Our approach also
utilizes graph-based partitioning to assign conflicting transactions to the same
block, in order to execute them sequentially. Similar to traditional implementa-
tions [7, 18, 25], the intuition is that conflicting transactions should be executed
sequentially by a single process, while non-conflicting transactions are executed
in parallel, with little synchronization overhead. As such, our approach is as
a novel application of state-of-the-art concurrency techniques to decentralized
networks. OCC is an optimistic algorithm, meaning processes perform their op-
erations under the assumption that no concurrent processes will perform any
conflicting operations. In our approach, we nearly guarantee this assumption
will hold true, as our memgraph-based consensus algorithm always distributes
groups of conflicting transactions to the same validator rank, and therefore the
same block.



Load balancing is a concern if transactions in the mempool frequently con-
flict. In this scenario, there would be a low number of unconnected subcompo-
nents in the memgraph, limitting the number of transactions allocated to certain
validator ranks. However, this is not common in the average use case. Eth trans-
fers are commutative if they operate on different addresses, and in Ethereum,
there are hundreds of thousands of wallet addresses active daily [12]. Addition-
ally, due to the gas-based execution system in Ethereum, smart contracts are
typically designed to contain simple logic that uses as little gas as possible. These
contracts can often be parallelized, as analyzed in section 5.4.

Our approach yields a ledger that is highly parallel. In a decentralized ledger,
each block will be executed thousands of times as new nodes synchronize them-
selves with the network. By computing the memgraph at each slot, a small com-
mittee of parallel validators perform a powerful transaction partitioning step
that ensures the efficient execution of transactions by all nodes for the lifetime
of the ledger.

5.4 Static Analysis of Smart Contract Conflicts

Conflicts between smart contract calls can be detected using their conflict lists.
The eth_createAccessList JSON-RPC method can be used to generate the
access list for a smart contract call, which can then be used to produce the
conflict list, but this requires the transaction to be executed in full. In an effort
to avoid this additional computation, we employ static analysis of smart contract
source code to produce conflict lists without executing them. As an example, we
explore a case study of the TetherToken smart contract [31], and Uniswap [32].

Listing 1.1 gives the transfer method of the TetherToken smart contract.
The method takes two parameters as input, _to and _value. On lines 13 and 14,
the state variable balances is updated at indices corresponding to msg.sender and
_to. Furthermore, the balance of owner is updated conditionally on line 16. Since
branching is only evaluated at runtime, the conflict list includes any world state
element that is read/written anywhere in the contract, regardless of branching.

In this example, the conflict list for transfer(_to, _value) is {bal-
ances[msg.sender], balances[_to], balances[owner], owner}. Note that by reading
the storage variable owner on line 16, this code creates a single point of con-
tention about which all calls to transfer will conflict. This type of problem
can be resolved using traditional strategies for concurrent programming, such
as by treating balances[owner] as a thread-local accumulator. However, as it
stands, calls to transfer cannot commute. This does not necessarily prevent
transfer calls from commuting with other methods within the TetherToken
smart contract.

Listing 1.2 gives the approve method of the TetherToken smart contract.
This method only makes changes to the shared allowed map, using msg.sender
and _spender as keys. Both of these keys are local to the method call, and will
therefore be known to all parallel validators. As a result, the conflict list for
approve(_spender, _value) is simply {allowed[msg.sender][_spender]}. This
enables a high degree of parallelism between calls to approve, as any two calls



1 address public owner ;
2 mapping(address => uint ) public ba lances ;
3 event Trans fe r (
4 address indexed from , address indexed to , uint value ) ;
5 . . .
6 function t r a n s f e r (address _to , uint _value )
7 public onlyPayloadSize (2 ∗ 32) {
8 uint f e e = ( _value . mul ( bas i sPo int sRate ) ) . d iv ( 10000 ) ;
9 i f ( f e e > maximumFee) {

10 f e e = maximumFee ;
11 }
12 uint sendAmount = _value . sub ( f e e ) ;
13 ba lances [ msg . sender ]= ba lances [ msg . sender ] . sub ( _value ) ;
14 ba lances [ _to ] = ba lances [ _to ] . add ( sendAmount ) ;
15 i f ( f e e > 0) {
16 ba lances [ owner ] = ba lances [ owner ] . add ( f e e ) ;
17 Trans fe r (msg . sender , owner , f e e ) ;
18 }
19 Trans fe r (msg . sender , _to , sendAmount ) ;
20 }

Listing 1.1: TetherToken transfer method

1 mapping (address=> mapping (address=> uint ) ) public al lowed ;
2 . . .
3 function approve (address _spender , uint _value )
4 public onlyPayloadSize (2 ∗ 32) {
5 require ( ! ( ( _value != 0)
6 && ( al lowed [ msg . sender ] [ _spender ] != 0 ) ) ) ;
7 a l lowed [ msg . sender ] [ _spender ] = _value ;
8 Approval (msg . sender , _spender , _value ) ;
9 }

Listing 1.2: TetherToken approve method



1 mapping(address => uint ) public balanceOf ;
2 . . .
3 function t r a n s f e r (address to , uint value ) private {
4 balanceOf [ msg . sender ] = balanceOf [ msg . sender ] . sub ( va lue ) ;
5 balanceOf [ to ] = balanceOf [ to ] . add ( value ) ;
6 emit Trans fe r ( from , to , va lue ) ;
7 }

Listing 1.3: Uniswap transfer method

with a unique msg.sender and _spender will commute. Furthermore, calls to
approve can be executed in parallel with calls to transfer so long as they
originate from unique msg.sender addresses.

Listing 1.3 gives the transfer method of the Uniswap smart contract. The
method takes as input, msg.sender, to, and value. On lines 4 and 5, the state
variable balanceOf is updated at indices corresponding to msg.sender and to.
Unlike TetherToken, this contract does not have a single point of contention.
Only msg.sender and to are used as keys, both of which are local. The conflict
list for this method would be {balanceOf[msg.sender], balanceOf[to]}. Any two
Uniswap transfer calls can be executed in parallel so long as they have different
msg.sender and to fields.

In cases like TetherToken and Uniswap, the conflict list will closely resemble
the average-case access list. Validators can save substantial amounts of compu-
tation time by retrieving conflict lists through static analysis wherever possible,
rather than through the eth_createAccessList JSON-RPC method.

6 Protocol Enforcement

The Ethpar protocol relies on the commutativity of blocks that occupy a shared
slot. Due to the presence of inter-transaction conflicts, validators sharing a slot
are partially restricted in their freedom to select transactions from the mempool.
This is necessary to preserve the commutativity of all blocks published by the
parallel committee at a slot.

Like all PoS blockchains, Ethpar enforces the protocol by punishing viola-
tors with financial penalties. In Ethereum, meting out these penalties is called
“slashing” [30]. The maximum penalty for an individual validator is to lose the
entire stake, currently 32 ethers. Rewards and penalties are described in detail
in Ethereum’s documentation [30].

In addition to those already implemented in Ethereum, Ethpar has two ad-
ditional actions that are subject to penalty for violations of the parallel block
commutativity rules. These are (a) Boosting - a violation due to including a
transaction in the block that was not in the memgraph, and (b) Censorship - a
violation where the builder excludes a transaction that should have been in the
block according to the memgraph of vetted transactions.



6.1 Boosting

In an effort to collect more fees, a validator can select their transactions from
a version of the memgraph that is not fully synchronized with their parallel
committee. This is called boosting and is a violation of the Ethpar protocol.
Boosting can lead to unforeseen conflicts between the blocks published by that
committee. To prevent this occurrence, validators include a memgraph hash field
in their published block, which contains the hash of the memgraph after all
transactions were vetted for the current slot. All honest validators in a parallel
committee will publish blocks with matching memgraph hash fields so long as
their memgraphs are equivalent, as described in Section 5.1. The memgraph at
slot n can be reconstructed by inserting each transaction from each block at slot
n into a freshly initialized memgraph. In the case that a validator produces a
conflict through malicious behavior, the network will be able to identify which
validator is at fault by checking the assigned rank of each transaction in the
reconstructed memgraph for slot n.

The penalty for publishing a block that does not commute with the majority
of blocks at its slot is slashing. The non-commuting block is removed and the
transactions within return to the mempool.

6.2 Censorship

It is generally agreed that censorship of transactions at the network level is
undesirable [13, 23]. Solving the censorship problem on Ethereum is a current
research topic, as discussed in Section 2.3. The practice of transaction censor-
ship is a threat to decentralization because it enables an adversary to control
which transactions to include in blocks. The detection of censorship is performed
in a similar manner as described in Section 6.1, where the memgraph hash is
checked for equivalence with the other parallel validators. If the equivalence
check passes, the memgraph is reconstructed and the deterministic conflict res-
olution algorithm of Section 5.2 is applied to determine if each block contains
the expected transactions based on the associated rank for slot n.

7 Conclusion

Ethpar leverages transaction commutativity to deliver enhanced block construc-
tion through parallel blocks. The deterministic conflict resolution scheme for
handling conflicts among transaction assignments per block is made possible
through a synchronized memgraph that contains only transactions with the vet-
ted status (i.e. transactions that have been seen by all parallel validators). Each
parallel validator partitions the memgraph using the deterministic conflict res-
olution scheme and selects transactions for their block based on their assigned
rank. The identification of conflicts in the memgraph is dependent on knowing
which addresses a transaction accesses. To account for state variables in a smart
contract, Ethpar uses static analysis of smart contract source code to efficiently
produce conflict lists without smart contract execution.
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