
Ethpar: Parallel Ethereum

Christina Peterson1,2[0000−0002−8070−7633], Zachary
Painter1,3[0000−0001−8334−8237], and Victor Cook1,4[0000−0002−9852−2581]

1 Parallel Logic Corporation, USA
2 cpeterson@Ethpar.com
3 zpainter@Ethpar.com

4 vcook@Ethpar.com

Abstract. A consensus mechanism is a mission-critical component of a
blockchain, enabling the ability to securely append blocks to the block-
chain such that all participants agree on block history. The essential
properties of a blockchain network are security, scalability and decen-
tralization. To scale network throughput and uphold decentralization,
we present Parallel Ethereum (Ethpar), a hard fork of Ethereum that
provides proof-of-stake consensus with support for parallel blocks. Eth-
par leverages transaction commutativity to enable parallel blocks to be
added to a slot alongside the beacon block. The transactions are orga-
nized in a memgraph, where transactions form edges that connect to
each node corresponding to an address in its conflict list. Ethpar uses
a deterministic conflict resolution scheme to partition the memgraph
into commutative sub-components that does not require any additional
communication beyond synchronizing the memgraph among parallel val-
idators. To ensure that validators agree on the conflict lists for smart
contracts, Ethpar employs static analysis of smart contract source code
to produce the conflict lists without smart contract execution.

Keywords: Blockchain · Throughput · Commutativity · Consensus

1 Introduction

The engineering and business transformation accomplished in September 2022
(the “Merge”) to migrate Ethereum from proof-of-work (PoW) to proof-of-stake
(PoS) was nearly flawless in concept and execution. It was a grand experiment
with many benefits. On the two year anniversary of the Merge, we recognize
unintended consequences. PoS reduces electricity consumption [2], but cost and
complexity have distanced the network from solo stakers towards pools, where
financial resources are concentrated and yield is lower than a US Treasury bond
(3.2% vs 4.8%). Staker frustration with low yield leads to risky hypothecation,
detrimental to network security. A few of these pools make up more than half of
the total stake, causing centralization.

The desire to maximize “tips” to proposers has created a centralized market
for block building, where a few builders arbitrate the most profitable trans-
actions. The centralization of digital currencies and their regulation has been

explored [26,39], where fundamental vulnerabilities relating to centralization in-
clude the central authority being a single point of failure. The central authority
may also favor certain participants while discriminating against other partici-
pants with respect to rules, penalties, and transaction processing. The builders
must prioritize Maximal Extractable Value (MEV) to maximize profits, but this
is vulnerable to corruption since front-running and arbitrage are commonly used
to gain profits at the expense of honest participants.

The Merge itself did not address network performance, as neither throughput
nor latency were improved in September 2022. The quest for better performance
has spawned competitors to Ethereum, many of which support the Ethereum
Virtual Machine (EVM) with the intention of luring away Ethereum developers
and applications. Layer 1 is where the network earns fees and is most trusted by
users, but instead of meeting the competition, Ethereum has favored Layer 2 and
deprioritized Layer 1 solutions. Issues are difficult to address in an ecosystem
that waits years for improvement proposals to be reviewed and implemented. In
this paper, we present Parallel Ethereum (Ethpar), an unapologetic contribution
to decentralize, increase throughput and align incentives to revitalize Layer 1.

Various Layer 1 and Layer 2 solutions have been introduced to address scal-
ability. Sharding is a widely-accepted Layer 1 solution to scaling the blockchain
while maintaining security and decentralization [8,40]. Sadly, cross-shard trans-
actions require expensive synchronization protocols and communication between
the consensus committees across different shards. This figured in the decision by
Ethereum to extend the timeline for sharding years in the future.

The use of sidechains is a Layer 2 solution that enables large batch trans-
actions to be processed offchain, while cryptographic proofs secure them to the
main chain. However, Layer 1 is preferable because it provides a higher degree
of decentralization and security than Layer 2 solutions. This preference is vis-
ible in the market as the great majority of stablecoin value is held on Layer 1
blockchains.

Our vision is to use parallel computing techniques to scale Layer 1 Ethereum
while preserving the original philosophy of decentralization. We put this vision
into practice with Parallel Ethereum (Ethpar), a blockchain that encompasses
a hard fork of Ethereum to deliver proof-of-stake consensus with support for
parallel blocks. Ethpar leverages the untapped power of redundant validators
(i.e., validators not proposing a block) per slot by recruiting them as parallel
validators. Each parallel validator proposes a block in parallel with the beacon
block. Concurrency control for the parallel blocks is made possible by organizing
the mempool transactions in a data structure referred to as a memgraph. The
memgraph arranges transactions from the mempool into a graph structure where
wallet or smart contract addresses are nodes and transactions are edges. An edge
from address a1 to address a2 indicates a transaction that accesses both a1 and
a2. Commutativity is a property such that two transactions are commutative if
executing them in either order yields the same final state. As such, any edges in
a connected subgraph represent transactions that are non-commutative.

Fig. 1: Each slot contains 2n commuting blocks, executed in parallel

We observe that two commutative blocks can be published with no defined
ordering between them, so long as they both have a total ordering with any prior
or subsequent blocks with which they do not commute. This produces a ledger
where the computed state is deterministic, as all possible orderings for com-
muting blocks generate the same final output. Therefore, we devise an approach
that enables validators to publish parallel blocks at each slot n, so long as their
block commutes with every other block at slot n. To achieve this, we modify
the Ethereum validator scheduling such that at each slot n, 2m validators are
selected, each with a unique numerical rank r. This is referred to as the “parallel
committee” for slot n. Validators each propose a single block that commutes
with every other block at slot n. We achieve this by proposing a deterministic
conflict resolution scheme.

First, validators in a parallel committee directly peer with one another and
fully synchronize their memgraphs. To ensure that each validator has the same
view of the memgraph, we extend the functionality of the existing “seen” status
for transactions, which is updated during transaction propagation in the exe-
cution client. A transaction can only be inserted into the memgraph if it has
been seen by all selected validators. We call this new status “vetted” and track it
using a data structure that includes all the validators in the parallel committee.
This ensures that all validators in a parallel committee work with the same set
of transactions.

Given a parallel committee of validators, each with an identical copy of the
memgraph, a deterministic partitioning algorithm is used to find all groups of
non-commuting transactions. Each transaction within a group must be assigned
to the same block, to ensure commutativity between blocks within that slot. To
achieve this, validators are initially assigned transactions from the memgraph
using a deterministic function that maps transactions to a rank. This function is

designed such that no two validators are assigned the same transaction, however,
they may be assigned transactions within the same non-commuting group. To
resolve this, we use a straightforward conflict resolution scheme where the val-
idator with the lowest rank wins the entire set of non-commuting transactions.
Since this scheme is inherently unfair, we tailored the deterministic function to
map more transactions to higher ranks.

In this way, the Ethpar ledger becomes representative of a conflict-serializable
precedence graph. Blocks in slot n have a total ordering with respect to blocks in
slot n+1, and a partial ordering with respect to blocks in slot n. Any conflicting
transaction at slot n will end up in the same block, ensuring that the order of
conflicting transactions is the same in every possible execution. Validators utilize
a fast and efficient conflict resolution scheme to divide commuting transactions
based on their semantics. These conflicts are resolved before the block is built,
giving validators freedom to construct their block so long as it satisfies the
constraints of their agreed upon list of transactions. Our approach improves
upon sharding based approaches, as all parallel blocks are stored within the
same ledger, eliminating the need for costly two-phase locking schemes across
shards. Ethpar is not mutually exclusive with sharding; it can be implemented
in tandem with sharding to improve transaction throughput via parallel blocks
at each shard. Additionally, our approach encourages decentralization because
validators will ultimately obtain higher profits from building more parallel blocks
rather than joining centralized entities that focus on building the most lucrative
block possible.

2 Related Work

The demand for peer-to-peer networks that support acquisition or electronic
transfer of digital currencies and assets without a trusted third party has accel-
erated over the past few decades. Ethereum [4], introduced by Buterin in 2014,
delivers a blockchain with a built-in Turing-complete programming language
that enables versatile smart contracts such as multi-stage options contracts or
contracts with conditional dependencies on fluctuating prices. Ethereum origi-
nally employed proof-of-work as its consensus mechanism for reaching agreement
among peers on the history of transactions. Although Ethereum was initially cre-
ated to provide a superior platform for smart contracts, they later made a bold
move to address one of the fundamental criticisms of proof-of-work - the enor-
mous energy consumption required to achieve consensus. Ethereum changed from
proof-of-work to proof-of-stake on September 15, 2022 known as “the Merge.” In-
stead of using network computing power as the mediator of good behavior, proof-
of-stake requires a large amount of Ethereum’s digital currency Ether (ETH) to
be staked by every peer serving as a validator. The most severe misbehavior
penalty is the loss of the entire staked ETH, which outweighs the financial gains
that could be achieved by malicious peers engaging in foul play on the network.

2.1 Trilemma

The blockchain trilemma, introduced by Buterin in 2017 [33], claims that no
blockchain can simultaneously guarantee decentralization, security, and scala-
bility. At best, a blockchain can guarantee two of these elements at the cost of
sacrificing the third. Sharding is proposed as a solution to the trilemma [34], but
research on sharding as a solution is still ongoing [22]. A robust decentralized
blockchain permits a large number of participants to join the network. In this
scenario, security is more vulnerable since the likelihood of a bad actor joining
the network increases. Scalability is also hampered since the consensus mecha-
nism takes more time to accommodate the large number of participants. Security
ensures that the blockchain is tamper-resistant. Achieving security in a decen-
tralized environment is challenging because there are no guarantees that the
participants can be trusted. The solution for upholding security is to make the
cost of misbehaving so high that it disincentivizes dishonest participation. Proof-
of-work requires solving a cryptographic hash problem that is energy inefficient
to append a new block to the blockchain, reducing scalability. Proof-of-stake re-
quires the block proposer to hold a large monetary stake that is at risk of being
lost upon misbehavior. While proof-of-stake overcomes some scalability issues,
it threatens decentralization since the participants with the largest financial re-
sources are the ones controlling the network. Scalability enables the blockchain
to maintain a high transaction processing volume as network participation in-
creases. The consensus mechanism is one of the primary bottlenecks to achieving
scalability. Lowering the number of validators in proof-of-stake to reduce block
time reduces decentralization, while lowering the energy cost of proof-of-work to
speedup consensus weakens security. To ensure decentralization, nodes must be
able to participate in the network with only moderate resources. Many highly
scalable networks sacrifice decentralization because average users are unable to
keep up with the CPU demand of processing significant transaction volume. Our
solution mitigates this by partitioning the increased transaction throughput into
blocks that are easy to execute in parallel. In Section 3 we analyze additional
factors that affect decentralization, including staker pooling, and most severely,
MEV.

2.2 Transaction Throughput

Many blockchains aim to address the scalability aspect of the blockchain trilemma
by improving upon the low transaction throughput of initial blockchains. Bit-
coin’s average throughput is 8 transactions per second (TPS), while Ethereum’s
average throughput is 15 TPS [37]. Cardano [16] emerged in 2015 from peer re-
viewed blockchain research and obtains improved transaction throughput using
Ouroboros [19] as its proof-of-stake protocol. Ouroboros uses a leader election
process that randomly selects a leader with a probability that is proportional to
their stake. Cardano achieves scalability through Ouroboros’ ability to elect a
quorum of consensus nodes for an epoch in a decentralized way. The blockchain

itself is partitioned into shards, and a quorum of consensus nodes is elected con-
currently for each shard. Cardano’s maximum throughput is more than 1,000
TPS [3]. Ouroboros block finality is guaranteed after k blocks, where k is a
network parameter set to 2160, which occurs in 12 hours or less. Cardano dif-
fers from our approach in its use of a Layer 2 solution for parallelism. Cardano
achieves parallel transaction execution with hydra [5, 17], an off-chain protocol
for quickly settling transactions which are then merged back into the main chain.
In our approach, transactions are not settled off-chain. Instead, transactions are
partitioned based on their conflicts so that they can be published in parallel
blocks within the Layer 1 chain.

Solana [38], introduced by Yakovenko in 2018, incorporates proof-of-history
consensus combined with proof-of-stake to reduce messaging overhead and achie-
ves block finality in approximately 400 - 800 milliseconds. This is much faster
than Bitcoin’s 10 minute block finality and Ethereum’s 12 second block final-
ity [35]. Proof-of-history uses a cryptographically secure function to create a
sequence of hashes where data can be timestamped into the sequence by ap-
pending the data into the state of the function, establishing an order among
events. The verification of the history is embarrassingly parallel (i.e. a workload
that can be split into parallel sub-workloads in a straightforward manner) be-
cause the sequence of hashes can be divided into slices and each slice verified
in parallel on its own core. Solana’s average throughput is 877 TPS, with a
maximum theoretical throughput of 65,000 TPS [37].

Hedera Hashgraph [1], proposed in 2018 by Baird et al., aims to improve
transaction throughput and security with the hashgraph consensus algorithm.
The hashgraph consensus algorithm uses a gossip protocol combined with a
timestamp for each transaction to determine its consensus order. Proof-of-stake
is used to determine a node’s influence on consensus, which is proportional to
the amount of cryptocurrency that the node has staked. As the network grows,
the nodes are divided into separate shards so that consensus for each shard can
proceed in parallel. Hedera’s average throughput is 1,544 TPS, with a maximum
theoretical throughput of 10,000 TPS [37]. The time to reach block finality in
Hedera Hashgraph is 3-5 seconds [15].

SEI [21], proposed in 2022 by Sei Labs, uses parallelism in several aspects of
their design to reduce transaction latency and improve throughput. SEI uses a
Twin-Turbo consensus that begins optimistic block processing immediately after
the block is proposed, which runs concurrently with the prevote and precommit
steps. If the block is accepted, the data written to the cache during optimistic
block processing will be committed. If the block is rejected, the data in the
cache is discarded and future rounds for this block height will not use optimistic
block processing. Transactions are processed in parallel by mapping transaction
messages to the keys they need to access in the key-value store. Messages that
update different keys may be run in parallel. Dependencies between transactions
are determined through a Directed Acyclic Graph (DAG) of dependencies based
on the resources that each transaction needs to access. SEI’s throughput is ap-
proximately 12,500 TPS, and reaches block finality in 380 milliseconds [27]. This

approach differs from Ethpar in that it only enables parallelization of transac-
tions within the same block, and does not enable multiple blocks to be published
or executed concurrently.

Nightshade [29], originally proposed in 2019, upgraded to version 2.0 in 2024
which incorporates some of the latest advancements in zero-knowledge proofs.
Block producers and validators in Nightshade build a single blockchain referred
to as the main chain. Sharding is used to split the state of the main chain
into n shards. Nightshade focused their approach on state sharding since data
storage for the state grows over time even if the transactions per second remains
the same. The addition of stateless validation improves per-shard throughput in
Nightshade by enabling nodes to hold the state in memory.

Ethereum undertook another improvement when the Dencun upgrade was re-
leased on Mainnet on March 13, 2024 [24]. Dencun introduces proto-dankshard-
ing, a technique that benefits Layer 2 solutions by enabling Ethereum to store
large transaction data off-chain. Data blobs, which replace the transaction call-
data, enhance the disc space usage for validator nodes because transaction call-
data must be retained by the nodes forever and blob data can be pruned after
two weeks. Proto-danksharding is a stepping stone towards full danksharding. A
danksharding system will divide the Ethereum blockchain into shards, allowing
for the parallel execution of transactions in separate shards.

2.3 Multiple Block Proposers Per Slot - A Solution For Censorship

Any blockchain that enables free choice of transaction selection during block
building is vulnerable to censorship - the deliberate exclusion of a transaction
from a block. An adversary may be incentivized to prevent a transaction from
being included in a block if it will result in profit loss. In this case, the adversary
may need to bribe the block proposer with an amount larger than the fee of the
transaction to be censored to ensure that it is not included in a block. Neuder et
al. [23] recognize that the cost of censorship increases linearly with the number
of block proposers that have the option to include the transaction. The authors
present the concept of multiple proposers per slot. Each proposer independently
builds a payload, where identical transactions within each payload are permitted.
Fees for the doubly included transactions are divided among the proposers. The
payloads are concatenated together to form a single block. The authors outline
the various outcomes of the concatenated payloads and prioritize the cases when
assigning proposer boost for resolving a chain split.

Fox et al. [13] investigate censorship resistance in time sensitive auctions
hosted by proof-of-stake consensus. The block proposer receives the bids for
blocks of transactions with a tip for the proposer if the transactions are included
in the proposed block. The authors consider two designs. The first design con-
ducts the auction over multiple slots with a different proposer for each slot. The
analysis of this scenario shows sufficient censorship resistance when the num-
ber of blocks is larger than the number of bidders, which is undesirable under
the common case of requiring a short auction window. The second design is to
have multiple concurrent block proposers where a colluding bidder must bribe

multiple proposers to successfully censor a transaction. This yields improved cen-
sorship resistance because the cost of censoring a transaction increases linearly
with the number of block proposers. The innovations by Neuder et al. [23] and
Fox et al. [13] are similar to Ethpar in that they use multiple block proposers per
slot. The distinguishing feature of Ethpar is that the block payload for each pro-
poser contains unique transactions that commute with the transactions in other
payloads, enabling safe parallel execution that increases transaction throughput.

3 PoS and MEV

Maximal Extractable Value (MEV) is maximum obtainable profit that can be
achieved through a valid ordering of a subset of the pending transactions in the
block [20]. MEV previously was an acronym for Miner Extractable Value when
proof-of-work was prevalent, but changed to Maximal Extractable Value when
proof-of-stake and other consensus mechanisms became mainstream. Searchers
use bots to scan the blockchain transactions for MEV opportunities and submit
a profitable transaction with a high gas fee to the network when a sequence of
operations capitalizing on MEV is found. Decentralized Exchange (DEX) arbi-
trage, where a token is purchased on one exchange and immediately sold at a
higher price on a different exchange due to differing exchange prices, is a highly
sought after MEV opportunity. Front-running is an MEV opportunity where a
profitable transaction is detected and replicated with the frontrunner’s address
and a higher gas fee to obtain the MEV away from the original searcher. The
unethical practice of front-running has motivated solutions such as the Hash-
Mark-Set [6] algorithm, which associates a sequence order for each transaction
that prevents the strategic placement of a transaction ahead of another trans-
action for profit gains. A sandwich trade is another MEV opportunity where a
searcher uses a bot to scan the blockchain transactions for a large DEX trade
that is likely to increase the price of a trading pair. A searcher can then issue a
buy order before the large trade, and a corresponding sell order after the trade
to make a profit.

Ethereum’s move to proof-of-stake consensus has endured a greater negative
impact from MEV because the resulting effect is validator centralization. The
large ETH stake required to be a validator is an incentive for the average user to
join a staking pool to lower the costs to activate a set of validator keys. As the
staking pools grow larger, their MEV extraction capabilities improve, leaving
very little MEV on the table for solo validators to capitalize on. This further
incentivizes a user to join a large staking pool, leading to centralization among
the pool of validators. Proposer-Builder Separation is intended to mitigate the
impact of MEV by removing MEV extraction from validators and giving it to
new entities known as block builders that order transactions and build blocks.
MEV-Boost [36], developed by Flashbots, is an implementation of Proposer-
Builder Separation developed for Ethereum’s proof-of-stake. The block builders
create a transaction bundle that is blinded and has an associated fee. The blind
bundle is placed in an auction to be included in the beacon block. The validator

chooses the bundle with the highest fees and the block builder publishes the full
block body upon receiving the signed block proposal. Although the Proposer-
Builder Separation successfully took the block building and potentially corrupt
MEV opportunities away from the large validator staking pools, it reassigned
this task to the block builders. MEV extraction is still a centralizing force among
block builders since validators are blindly signing off on the block proposal with
the highest fee without concern for how this fee was obtained.

4 Motivation

The trend towards enhancing blockchain transaction throughput has incorpo-
rated parallelism in some aspect of consensus or block construction. Solana di-
vides the sequence of hashes forming the proof-of-history into slices for parallel
processing. While proof-of-history vastly improves the time and energy efficiency
of consensus in comparison to proof-of-work, it doesn’t address the scalability
concerns for block building. Cardano, Hedera Hashgraph, and full danksharding
divide the nodes into shards, enabling consensus and block processing to pro-
ceed concurrently for each shard. The drawback of sharding is that a transaction
that spans multiple shards requires expensive synchronization protocols such as
two-phase locking to ensure atomicity and isolation for its operations [8].

SEI uses a DAG to identify transaction dependencies and executes non-con-
flicting transactions in parallel within a block. The parallelism achievable in
SEI’s block processing is limited by block size. Although the block size is a con-
figurable parameter, increasing the block size results in increased bandwidth and
increased latency to propagate the block [9].

Our goal is to enhance block construction by enabling entire blocks to be
built in parallel, referred to as Parallel Ethereum (Ethpar). We use a similar
technique as SEI regarding the parallel execution of commutative transactions,
i.e. transactions with disjoint dependencies. The distinguishing feature of our
approach is that the use of parallel blocks has much better scalability potential
since block size is not a limiting factor for the number of transactions that can be
processed in parallel. A subset of validator nodes are randomly selected to serve
as a parallel validator for validation of the parallel blocks. Ethpar mitigates the
corruption involved in MEV extraction because the addition of the parallel val-
idator role incentivizes validators to prioritize transaction commutativity when
building blocks rather than MEV.

5 Parallel Ethereum (Ethpar)

The core of Parallel Etherem (Ethpar) is the memgraph. In the memgraph,
ledger addresses are represented as nodes, with transactions forming undirected
edges between any address they read or write, shown in Figure 2a. Intuitively,
this graph can quickly be partitioned into commutative sets of transactions by

selecting all unconnected components. The construction of the memgraph is pos-
sible because all transaction logic is known in advance of its execution, including
the storage variables and addresses the transaction may access.

Validators require knowledge of a transaction’s conflicts to insert it into the
memgraph. Furthermore, the conflicts must be accurate with respect to the state
of the ledger, as validators working in parallel will be unaware of state changes
made by each other during the block interval. To prevent state-changes from
creating unexpected transaction conflicts for validators working in parallel, we
define a transaction’s conflict list :

Definition 1. A transaction t′s conflict list is the set of all world state ele-
ments that may be read or written during the execution of t.

A transaction’s conflict list helps identify transactions that commute, regard-
less of the present, or future world state. In Ethereum, the world state refers to
the state of all accounts, each of which has an associated ether balance, and
storage [11].

Array accesses commute if they operate on unique indices, for example, writes
to array[x] and array[y] commute if x ̸= y. For this reason, each index of
an indexable storage object is treated as a unique world state element. This
provides finer granularity in identifying transaction conflicts. Local variables are
not included in the conflict list unless they are used to index a storage object. For
example, the conflict list for the statement array[x] = y would be {array[x]},
if x and y are local variables. Validators use the conflict list when inserting
transactions into the memgraph to ensure that the edges in the memgraph will
not change in response to state changes in the ledger. We explore a detailed
case related to this in Section 5.4, using the TetherToken and Uniswap smart
contracts.

Our definition for a transaction’s conflict list is inspired by EIP-2930 [10],
which introduced access lists. Access lists were introduced to optimize storage
accesses by including a list of storage keys that will be accessed by a transaction
during execution. However, the access list for a smart contract is dependent
upon the state of the ledger at the time of execution. For this reason, it is
not sufficient to represent all possible conflicts between transactions in parallel
blocks. Furthermore, computing the access list for a transaction requires the
transaction to be executed within a sand-boxed EVM. A transaction’s conflict
list can be computed more efficiently than its access list via static analysis of a
smart contract’s abstract syntax tree.

In Ethpar, A subset of validators are selected as a parallel validator committee
at each slot (Figure 3). Parallel validators cooperate to append 2m commuting
blocks at their assigned slot n. Each parallel validator is assigned a unique rank
r ∈ {1, 2m−1} in slot n. Rank 0 is reserved for the beacon block. Once a valida-
tor is selected as a parallel validator, it must open a peer-to-peer connection in
the execution client with the other parallel validators. By directly peering with
each other, parallel validators can construct a memgraph comprising transactions
that are guaranteed to be seen by the other parallel validators. This ensures that

f80b0720

52ca
c3

ee

0000079946d9b8e4

4c3
55127

8a4913f7

54b29d74

e7bdbb38

d39b9eb0

885d9f39

9a683e11

50869544

80f0944a

358c6
3d7

b2546226

29
3c

74
75

31
46

ac
3d

a1
73

0b
80

51fcdb7a

9f
01

4b
ee

76620dd6

35ed8bdb

70
c3

5c
fc

7d8777b9

d5f86f4b

53
f8

3c
e9

ff3d23a8

00f53537

d2d9e93e

f2787cdc

f75cdf1d

a817c616

24
08

23
ac

85
70

10
39

bb49d4f2

e0695548

81
68

a4
37

f9dfb392

0e
fd

2d
be

0c639299

03466c48

3bf5a5a1

65758465

db362625

28
81

c6
38

3852beff

e3
c9

f8
95

e8109b63

fcc4b54c

f57f97a7

53f5faa9

64309d2f

2c6f0052

5eb9f726

690ea58e

475412a5

51
8e

7a
33

12
ffe

8e
c

5541d9ff

bbb07926

0f7de396

4af6dfc7

50ab39a7

4a
30

17
fa

f5a46870

a7f3968d

f2542725

ca1c53eb

7f
f5

7b
d9

edc89d39

8e280789

2ba96cb5

7f
c9

9d
e7

4b
9e

e5
61

14
e7

8f
2f

8bed0803

c96c2858

d7222446

119d284c

b995e8ef

30c5314c

61
df

5e
97

e8
72

d4
5a

f037521c

048570f6

0f
26

5e
bf

87
64

8d
46

64ecc856

3f
6b

9a
5c

54467c91

db1144d1

f1
16

6f
32

758a03e3

64c1146f

5e
8f

dc
d5

09
69

f6
58

f9
d4

4a
53

84de0d40

72
c8

5d
ec

81263b5a

678fd47a

f8835cf1

1d5ee2fe

d7eee03f

59dbe4d5

16e3c2da

0d0febfb

7bb
40b9e

7c92badd

79ca3a1d

45c997fe

815feeed

b7
22

7c
a1

52e52aad

484ae961

df
ff6

2e
9

d7
22

24
c0

c5126a2a

e4
0e

74
0d

8998e107

e2
5e

bc
e5

0b11e5d4

c6bd1b38

6b3ff8ae

db0e9673

29c7
eb51

d2934acb7ce2ad71

262c0657

bd9f9bed

ce6b154e

ca2b188c

c0d61522

60ff7b58

5a5be64b

8e85bf24

5e
a2

17
29

d807bcea

f1
c5

b6
8b

68aa161c

b5ec9204

2e
81

ff0
a

f9
bc

04
f7

94ea5cfb

e607b10b

aa10a314

46c5cec0

6f537939

8b
7f

d0
d2

f369dca0

c7535713

f9
14

29
d9

d7
b8

5d
f1

3085834a

9accae95

d75ac52d

00000037

a0
c6

1f
17

9fe508a2

9cdf46d0

c3daf7f4

90d9c675

94886db5

05
8b

24
14

452c57d4

949ec25c

273b435d

0ccd7ef2

261aacb8

d03469f9

19adf605

d79cf839

8d7f575e

e4
73

29
25

9349e5ad

50ba5ad8

d1
f2

38
78

64b93d92

28
fa

11
e8

5e3ccc49

38202b8e

ee42f633

35eb0d71

9757b4ac

cc989055

7b2291cb

490b3df7

91
4a

d0
25

34
d1

f1
bf

5812ca64
87

8e
b4

e4

6652ab34

104801a6

a8381e98

fcca80b7

23f43fa3

83edce2c

269d04bd

ff0bbf8554b552f6

45
81

67
4a

159862a036f0a805

0bb6849b

a9b513cc

d2
dd

b7
e1

2d006605

b1fb1c90

6b936a10

a3050a5b

0dec2d0b

5c03b204

c47d5541

8fd5f5e3

1711ec85

e003f714

348d5842

61b18f34

b5cdc8ea

bf5ad71e

63f5ed55

e52beca0

8b6e3bdf

977b92f7

4ada5950

a2b09758

e795b274

ee9c5f14

5860a328

8f61a238

0518ad80

18400001

60bcd867

58f5b416

075f9817

fef8f913

ec
34

a2
aa

646922a5

4f7ba716

b33017e5

2e
e6

ee
84

9197d397

985d4b12

68
6c

84
46

c02c8476

3013a024abc02ec2

a518a946

24016c0c

a4fb2051

d0
89

06
49

468002e8

8d
9c

05
c9

b1d97c48

84
bb

69
05

50a10f56

8758a438

69e67cf8

56
d4

55
48

40a0b405

6360d193

ca08c659

cc09d9e5

31
ec

28
45

a272570a

000001c3

67
62

1d
68

39c10e65

80
11

7f
cc

cc978ef4

03b51403

e73c0901

ffa38084

15314cec

ae53f346

09
98

97
da

be491eff

935f399c

f41816c5

bd724d93

71d083db

2ff6fbf4

630ea64d

7f4daeb0

16
17

cd
59

c59b617f

ba4c440e

2e4ea37d

b052ee77

1debcebc

91e8503d

cd81f0ac

88
57

d5
3c

03b0df38

e7dbae72

94
26

29
17

c82b677a

e716e4d2

a31653b6

cf76784b

42
65

fe
64

ed1bff92

5f01f86f

d1a0ee3b

cb
e562e2

f1ee0b99

585abb4c

c56581b8

b5
2a

36
a2

264e6fdc

ce
e4

55
af

efb18387

0b
f9

df
d7

cfc64e80

61ecc223082c4b3d

8be4a1e2

07
9e

d3
45

8563bd95

4a1f3af0

35
83

51
9e

90
4e

57
6b

31e3e8e2

157af350

650cc5b2

0bf91a22

934dfad5

e4
ce

31
fc

48e48ca8

0b941b59

9d00fba9

d1517c5a

34f1ae50

d4
a1

58
12

4d
04

e7
bd

7a2de23d

b10743f6

66024249

528c18a9

30
26

12
f8

e6
4f

43
83

7c5b6df1

bf99d2bd

4751f2a9

e465ddef

eeb02d5f

a1daf797

1c97ca8e

994fd5c2

bb
98

91
30

ed
56

ec
42

000008d3

7cad1e8e

4cdb6984

6a87dff1

0000008f

8e7503bd

366e10ab

50
45

10
a9

bbb5df15

57a42ba1

10cf6
488

7a0bc3a9

32
82

bd
b5

cebe2cd4

1a899b86

42b21df4

3b65bb60

6e15d82b

d34adff5

75da0756

07c4
b093

9609c9
9c

ea4bdce7

f66b4eb0

21
a8

29
4b

b11164c7

af
60

22
bf

c5784cb6

a5a979f0

eeae9d69

6d
0f

d6
6a

8239107f

9fedc8
d8

3d265da8

5afdd7ea

a1ac952f

dae420ba

bccb04a9

ba8c6e3f

a37f1958

b0
20

b1
b8

8f
0f

51
b7

6c
2f

10
10

1a
d8

d6
1c

c5
c6

ef
3d

b19273ee

441613d5

ea76a25f

599fb323

e64e4142

52d22671

a9883e1d

fcd3f6b3

bc5c150f

89321bed

ca3ad1c3

c87fdcbe

c3faf771

9e2dfadf

01df8352

42
4b

a9
8f

fcd28621

1c0b6884

caf0f574

a4e509d6

09bd60d7

6ef46c3
b

d4dd7098

6a760e0d

de7b4654

e243c8f9

07c7a8ff

b5
fa

60
cd

e03f3a50

0b
a4

fe7
6

6e
14

90
1e

f5a3af18f687c402

e6d26327

4d8d5423

9d
91

e9
13

86f22b19

15574d24

14e5d426

cee6312d

b729da08

d5
d4

ea
8a

b479abe5

00
cb

81
fe

de74b519

01035ecb

21cce5cc

07
84

63
ad

a6e99eb9

064c9ddd

165687b9

587dfc27

deb9ba3b

acb8a882

bd
68

06
13

e6d4556c

a2bc8e29

f458ce32

86da62c6

aa093e69

8b
4d

ab
93

79
95

c5
2b

ee31b41d

6ca17e11

7b1eee9e

7b
1c

49
b0

3a0165a2

a5fc857e

2f8c9ea2

c497379f

4a5aff5c

646de55c

a33fea63

409c6920

d1bd6a15

fc985e70

19
66

25
77

b76d9d50

f520634e

6a
34

22
6b

00000065

79f543f7

3a72f36f

a02730e1

7560f464

63f2f7d4

fa156a51

0d5c10f8

d4
3b

e9
6f

fda59fa0

b80e5b6a

23e9e2ca

d2914fdc

99
47

ae
88

18400005

5219c2f0

a4e6fd84

76fa3091

751b0e39

89248df8

4d53faee

86
6b

2d
19

88c0fe4d

68
81

fa
d9

59b1e543

ee50763d

3e672f50

5682af77

8b01987f

af
eb

43
00

f36f682a

b7
1e

e4
fe

4f
33

f0
c7

baee5d77

18
0c

c8
88

455e780d

980cfa
44

8343aa70

0ddec68e

5c0fbe35

5f262673

6570093b

6ddd9c0e

796c4252

1cbf51a8

6b179ee6

1a96e212

51
3c

2c
f1

1c0787bf

3af9f28d

1fd08b3e

164413b0

273a1e4f

1d483f80

48a432b2

3785f431

fa39b71c

b83ca2ed

9bc9
3c4

a

c587d3fc

f5c428b3

9cab27f5

684931b9

e33183b6

ebc44c7a

1d441392

3c72c4c3

a937e9de

be8fdf07

37
5f

26
4b

3b9cbd63

63b214d9

e8fb8d4d

2a
83

b6
db

8b40cf04

25
25

57
49

77
a7

f3
09

6864cad8

c6d12348

74608179

16
fb

61
52

fa
9a

2d
b3

cb6f7060

dbf58138

0f92a8d5

69f8e95f

de5a7642

3e0a2816

e7f408cf

71e6e55c

ba1325f7

99293e31

60
90

bb
41

98deff4d

a5c4de3d

d0a2d756

32cccd9c

0d5b0b1a

e05c3f46

3f
71

a2
1b

f5415e1d

1fcff594

e2e137c8

bd8802ad

ab2b8e5e

04febe1c

e6be5c13

0a3a03af

470e4fe1

1c8beb60

a37df04a

2a
74

78
f0

99da0749

380da284

68
79

e2
60

3ef489df

6cfa0ad2

f6ed4682

a1b1b183

a867e324

d4df1754

dc452f02

c1c1f6fb

ca6fdd30

d194327f

9088a394

bf
92

b4
c2

cf9dca11

ffd2c46d

000000c3

2f0a03186fbd5764e2cf465e21588cae

723e041b

f8302d71

8c0d582b

186477f0

b7f4edf6

3eef57af

7f
ff5

4b
0

88bcb7c8

1a6f19ae

de8f344e

9c81f86b

993ab87b

2f60b434

a8c63b8d

24
08

fd
f2

2fb25eb2

1a492b8c

db
37

7c
f2

230c7588

b8
37

59
76

aba67020

6bde2fd0

b52f95f2

fc
d0

5d
30

658f0d9ca0c83f83

11f0adb2

625478508ce61ba0

9a0b2253

8c084fe0

d4b43547

1881f71f

0f668148

11f14f1e

25
94

b5
7a

2b131b65

a4cc89ae

8b2d63df

95480bc7

8436daab

59
56

db
6b

f87a2d8a

06ed8ff8

78a70172

f3
4d

d9
c4

4b2aac5b

c65a5bb7

d6fd8a15

68
d5

87
f6

df26c2c8

65b1bcb3

ef
8d

b7
25

4f5dc0e8

44439b91

8b
78

fe
21

8f0160db

d086934a

09b898b8

69
1f

53
8c

ee4407c2

683257f3

690bc51f

02b9b920

13b89e26

042865f5

7a
ba

16
32

4971aa66

d8
98

cf
f0

37581f3c

f601039e

63d512c4

8c14e06e

518daeb1

e2a19089

58f4a242

1dab16ae

f71e4b6f

f9
20

3c
b0

aa14750c

5659ce51

457fc38a

19e66d4f

d4342234

d5601966

325e7b4b

87dd4e5c

3c97a704

ed6d46dd

03bff10d

13
46

9f
1e

78
dd

9d
fc

c586588b

cc1ed54a

e69b77aa

d85a05c8

66
a5

4e
0b

9a8262fc

c581206d

a25e4e08

75c828ab

9d
d1

41
74

1c
91

42
26

00ab980e

83a5f38c

fdec0224

874a3b5d

34fcaaa2

045ca7b9

d2e5cecc

ea
03

93
12

08cbc827

18ce6590

a5993f66

b608eb7b

a7
92

fe
54

a8379d60

7e3ded5c

62367f2c

e7dd7faa

45
cc

bc
97

95
f1

a9
c9

b4e41af5

da4015d3

03
0b

38
16

be
5c

96
6a

5927e63f

aa84b0f4

40d914fa

c4
e5

50
6c

01093d74

5f
57

cf
cc

5950bfc8

dc1
ce

68b

9103ca15

74b1f516

e5c7309f

a6dea722

946c0cad

af8fb101

bba01293

4e1bc4fa

84a6998d

e1fc47e4

21121203

49f0addf

2fb042bde6847ffc

e327a4f4

a3b475c5

57616f74

43c03785

18c2f278

059b8c3c

ef8939d1

b2
fe

8f
98

88310de7

4a253ebe

7ec4cae4

d5
37

2f
33

1c
93

9d
ce

e511a177

0da43947

7c83a26b

98
45

8f
dd

109b605b

3a1c4ce7

ccef9429

500215eb

76afea92

65746431

89
fb

18
38

dd43de85

2916c278

8956e428

596eadda

2e839d1f

cb4b0f4b

dcc15d60

abac4a36

83e7ba5a

8f67b311

f131785f
c4eee06f

baa13fb4

aa00ee85

27
0c

43
bf

61c75546

fd4a8dd4

1fbc3ff5

05e9fe76

bf86b24c

14ab3961

a4ad48b8

eeb7c8c7

3c05c0bc
664241c4

72
d5

5c
50

3d8f9fd0

5e
38

b5
b2

b1d241e9

4e
86

5d
c7

9d29f4fb

de4adde4

b76ff27c

0108106b

4b
d8

59
37

e1fdd7be

86949d67

963f77bb

7dc99ff2

0a71efdb

6d
0f

53
2a

599a1821

d1557d00

1e1d763c

58
2e

07
ff

7c
aa

01
42

206a40b0

41
9a

8e
07

1b
6c

91
48

08ce7cea

bf5ea3e5

d1
40

e3
bd

b638251e

ed
a2

eb
a3

a6d97aaf

f8e4db37

32222ae2

05a2ffcd

4b
9e

27
cf

2b7fd428

e3a946ac

cf465093

71e5de3f

1165ac78

2d6062e1

a3942522

529eb977

d860f44d

f5
13

be
2e

ad2735e1

1149eaba

16873253

c3
0e1385

88f0a8ac

71f6df9f

ed
ac

6e
02

1beda368

c92531ea

a76043c4

fd26995b

48
a2

c7
8c

d9e1bee6

33
4d

bf
c0

67934856

8c4cd1f4

d0e877d4

d63ed06f

43b2d9ec

31ba0d6b

1b
c9

07
23

dec318a6

12724575

dccf0747

89d05532

0611da24

c587475f

51
66

82
e6

02
34

9c
9d

0bcf220e

67a3c4fa

03b06423

9a31bba7

b8edb30c

2138a3fb

59
fa

1d
09

4f43479e

2c
2a

07
c4

1d791a67

7af56425

de8fa5be

e4
f6

7a
7f

55
61

cf
e8

2e131aa7

fde54f29

33a1c80b

8ea43dc7

c0fd7f74

8f
b3

0c
9d

34
6a

f3
83

1f7bd9fa

f6c7f0db

174094a3

318cde48

582fd57d

b62e8aaa

14
e9

71
50

f9605366

4696c77b

689cd338

58a082b2

12fa32fd

b79efd8094715082

14a67740

e9
1c

a7
32

4f2e66c4

122ab082

12
9f

64
97

2ee5e5a1

da800cf4

91cfffb7

44eb8328

0c3e3596

d1332686

6f8164ea

00f18b12

300b2e47

8f53962a

19
77

47
b8

65d6cae1

89
69

18
b6

0d
94

12
97

3f90b2bd

c4c58158

88226c3f

4d9d7414

47289021

79c2
f156

dc
7f

89
7d

41217b69

19
7a

c0
50

8ead4a6b

2702634d

fd0e1cce

c90afa47

2bbc48cd

bb4d65c9

872e6eb9

54b5a4d5

6b2f7936

d98e5d0c

3647cce2

feaad36d

8bb9ede9

16
52

06
9c

43
f0

35
e4

708fb852

6480be0d

36b258f2

32918fea

4a359d8a

60
71

6b
5d

50
d2

8b
67

b23f22df

a4ed214b

ab
b9

87
23

c37b018b

1b
dd

e4
78

18400006

73d2965d4f547b79

8ed86a44

1ca65c1f

fbea3039

46925fca

aa623163

3e84ead5

b465b199

ecbb559b

d0
2f

57
87

d6b08a83

7f21ae7f

b9
9f

05
0a

b7ae3496

4a336b0d

51c9e3a8

4e49d31d

fcce2b44

e05cc5c5

e81e25b4

2a782908

418c45ee

d7bd2f8f

13
69

61
79

995512f5

f0bb3158

d52807e2

81bca7ca
458c54ab

62dd4a64

0925df8e

3440fa14

0c084b09

cb952591

05bb77bb

a0c67f67

9d1c8dd9

64
3e

ba
96

ac93c135

eca316dc

ff002df7

12
b6

a5
34

45
82

5a
89

337be8ad
3bf45755

e62f6022

f1198270

e7331225

eb060a1e

bd420597

07
a1

77
d0

b0605ac8

e80aeb053e845bca

c3
70

d0
70

eeb2833d

c00c87e5

8823a609

634f7c9
9

20d4cdd6

da36b271

d6e0d121

9d3504c5

7d
47

51
79

24db250d

bb
e9

1c
4e

5fa640a7

bd
cb

8b
ac

eb418b08

1045a79f

0fd58bec

7530f3e4

0d9cdd94

f8bb64eb

c5a283a91e410f21

809daf94

5c32c49a

7b541157

92184b59

08
7b

a2
31

ef35cb68

16
54

7c
76

9d
c1

22
78

34bfe7cd

87be5f7c

f9c317a6

1b4589f0

0e
2a

c2
ab

cd1ebf42

64dc3cbe

ee
68

11
6f

7f
54

63
db

bb
d9

0b
d5

c78f72a6

ce0176e6

05ece879

ba261dd9

326c219e

1133c6ee

19fec6fb

a78f57cb

575ba19b

c43c8526

f786f1e7

e2725420

123302b0

12b41cf7

49d70a9f

9889508d

510c1d31

a0
f2

47
c2

4c
46

4d
ba

3e
e2

e1
c7

3e4f545d

00000890

7c
7c

87
28

d4
3b

94
08

df88775c

69
9d

cb
a9

e3c55cba

2ab1253c

e7f07a3c

13047ffb

9993cb39

b88af17e

fc1
edea7

c91cb69b

14257d04

a3893e7e

b0
cc

26
7f

2086cd6b

8211fa1e

b77847b7

32
09

f0
41

2a5aabfe

59f07499

7d3a1f52

3d4a3643

ce
10

cd
2e

42
6a

a3
aa

efe36e79

9bef2ba1

70a50d8f

bce
88b72

29c5f29c

02f317a5

c2227764

9d578e53

60
86

36
09

5401bdac

2e69f341

147e9d43

489f5dc8

1e5b3d97

5a20a57f

e79f14a0

141a030a
79

7e
28

28

e845a8a8

75efb776

9d2a8981

394584ad

b4
a1

32
aa

81511f1e

73d49e3a7c20b337

ce
e9

4e
5b

b7
37

f7
3f

230d0b7b

23358157

4e3f3615

b7e1c5fa

78f1f3aa

71013318

e33d6351

0309866c

f3
6b

46
2a

d4550961

a70ad64d

87
05

ec
e0

23bca002

57b9c344

000008c3

09
9a

ab
fb

c48914c6

a18d93ca

81d00899

5f980e47

b05354f4

8d9aebd2

cb44af82

23cab057

88
90

09
e9

20
e7

d5
ee

f9
16

0f
9b

b09be29f

d45594e7

6627964a

39b73bfc

dc
e4

0f
d9

1e
f2

38
bd

a0b54a7e

4f
21

d8
12

c17783a1

3861242d

d28c54b1

09739b4f

576feb28

dca85381

57667001

2b982bfa

04e61619

05e7ab20

2acfeb76

61868e30

eb698adb

38
91

11
49

5a
7e

5f
2c

95a9388b

204b63c9

b4
a7

12
3b

1f18e350

e9f72ca
8

bb454027

d5ebb8fc

a3a09e07

edbbee6e

00977560

c55facd2

29fc04b7

b2
ea

62
d8

08
c5

dc
cd

268468e2775e9496

63
f7

23
0d

1b2f1200

02592f8e

67a5629f

4c9b74b6

3f9bf128

36
95

22
04

93b6ea33

c614c0

7793e9

261492

62f9ca

f5fc7c

95cfca

b88941

63838f

d97f66

70d42a

0f82e8

eacee3

f18a50

448bb2

04ad71

fefaa8

7aeea2

512c47

458766

48447a666e8e

7b3999

11e5fe

48446b

3e61f1

d0401f

d98268

8d20f1

18f16e

3988a8

a795f0

2758f6
714cf3

af1d37

43584c

066e4c

92a060

d74633

218a1f

92a1c5

4ae754

ab6307

d451e8

7ce8b6

496c79

56758b

f6969b

6a13c3 d764b0

c75b4b

7d5828

ba0f85

f37b76

fd9ed4

337b11

01e5f8

f0d9fd

d24dcc

66097f

c2f09d

d0be01

a7c6d9

222ffd

70e377

a32b67

e063b5

f6d51a

9d8f3f

05eab0

a7582a

a591f6

e8c4fe

32f72d

0b76a9

932f23

c52b48

f31c6f

e5ec6f

517aec

f17d19

820f11

9dd229

37d507

3a6535

8ea5dd

a3f055

31a8cb

9ff2b5

efb661

2492f8

6ed338

31543c

33b656

066435

3e4c32

fd396c

28bf4c

17b4cf

a608fb

8e828c

19b135

0be481

dd1c02

0a9c20

e2d6d1

1eae74

6540c0

a0a884

17650c

c20a6d

1c80f6

dd476c

c0f1b6

a4465d

ed8da9

edc75a

0be80d

b254f9

13bbae

2cc228

9d4f7d

d0ba7f

7a3ee2

94907f

115508

e95945

2fb534

1ba9b8

792b15

6092b1

1589cf

8d14a1

ef39d7

6251e2

3d1836

b4763d

a4be2a

9c84fa

603f0e

3b1c3c

7bc396

a40d86

17072a

128c16

f8d9e1

0382ad

412bec

ec51b1

a18d33

3ba904

e687eb

f91dad

e6df4d

02c438

d5c716

2476cd

31f38b

710176

5a4a59

2593d2

2433cc

402fb3

236232

73e6c5

057c90

2d899c

fe8395

9ef587

560fc7

a50a42

24c546

6a0e95

2cc396

18c489

c25d79

d53a7b

b07385

b6fa59

c9c554

ccf10b

2654a8

03e3d2

d53af2

0aec37

9b6024

7f5e48

a2014a

3147aa

2c3f0c

012295

ac01ae

63a639

027413

bad7cb

1f3845

e66f09

cb6a5f

aad963

10e71b

6d7aef

dbcc7a

40fa9d

037cad

2b247e

98de8b

af98a1

9683db

efbc3b

d7691c

92c7fe

057f0f

2573f4

6fe2bc

421ced

b15440

cc5c21

12a9aa

adf5f8

f729a5

7501f7

83e56a

68e041

f07402

44eea0

1c187d

8a26c8

a2790a

eb6baf

d35237

297513

a820a3

6d59c3

0f102d

a51d7c

ed7cb8

309758

0b9d8c

09441d

367a8f

4df9b0

455e94

972706

379bec

1e3e90

7988ba

c87940

c8f79c

fa8132

6ce7f0

2bec14

cf0215

0a3151

e29d24

ea8d38
8ce9e2

5bf216

f21a99

a27fb3

628eca

76ad46

af2537

be3afa

75200d

5618f5

dd6f99

d1fe51

2ba725

168c54

51a5dc

602c7e

2296b1

b5d905

1a8093

317d49

4a0547

85d50a

86ed94

967b17

8ede4b

1ff3e0

15a3e3

c419e9

12d2fa

29b35c

2bc21d

873ae7

8319a4

bdd7ef

9ee524

deaa35

aab962

4fd270

0b0549

2626a6

68b67b

200408

b9371c

76bcb0

339b88

e29af4

81691f

ecfb58

6695f0
d50154

b35974

a6bb5e

bf3634

d39473

3e7e3a

e2b5c0

663a68

07d455

7fae1d

d5c492

e778f9

d46012

47c135

fbbb42

7d9d22

c674c4

2729e2

2fcb0c

6724b2

5c2b4d

c7c525

5ceb41

953dc1

6cb1e9

bb7f90

9698cc

a862e1

24664a

a580dd

940856

02579e

feecd2

ddb380

ebbfcc

57d859

d3bd48

9a1bcc

f0aa5e

db5175

6e6bf8

cdc05a

853dde

b5ee56

7bca50

3b91dc

632dee

c21c77

cdb5d4

a31390

8eb003

1fed05

eaddc5

48a864

b32f45

15b7c6

dc4117

0018df

47e779

10a0cf

eb6ac2

308b28

b40a97

ce5856

ace11b

4b36d5

f72a40

624d24

d17d4e

b51ad2

8017da

002fac

1a4cc0

6ff7d3

f41202

7aebd3

5a8657

be8c20

b8c89c

171d34

6fd158

f0c87b

e7fd4c

258c11

dab3ae

6362cc

0859e8

7b4898

cf295d

d5cf03

ca4fe7

5364a0

a6ef8e

da9c67

4a3d5a

1963c0

1b0a70

a226c4

15197f

90a019

6c981a

0d6eb1

9ac777

33fab8

6a49f3

692bf7

8f74b6

3f99d0

69263e

f1d447

6f9eb0

a38cdc

0740b1

c2586c

5f000d

931bde

fe8463

4268fd

8838f6

bbfa0f

5b5384

5537d7

4c04d7

32e49a

a9735a

3fbc3a

dfccfb

99e103

d20697

e97a26

3639c2

682fc7

941fe6

328c6d

5cffdf

bb813f

32c1ae

ae0d36

15681d

9e7b05

2aa005

0af879

5de84e

d7da64

7f82c8

0888e9

ff0000

ecc966

54a03d

85c0d6

ff0000

93de6a

ea593b

d8c5c5

d3f681

222f1b

b29597

fbb3a1

2e8628

5fd002

5e809a

58f280

ded08f

3d92a7

b87791

990f11

c144bf

7992bf

a098b7

a6a425

688826

a44151

545c36

a4236a

811f83

a960d7

f2dd39

ee715f

131710

302058

095ddc

3e4511

ce658e

1828ea

000000

a946a0
709807

29951c

1122f8

307abc

6f124f

1e5e62

6a61ea

a692db

fc39f3

f92115

ce99b8

feb1ae

22ec04

313f4c

f0ee9a

7ec881

9ea87f

24c6215fc3a3

ea51b3

f4e83f

046976

37bf08

bd95c3

32b16e

6cc939

0e99ab

bb3fb2

26b3d2

00ab90

eb604a

8507f7

67d0ed

0c0ade

7aaa47

7b8df7

873501

c99a09

20e928

3f1c54

2c4d3f

d6e9cd

4e1164

0baafc

8c8a1f

3f462e

a39fc6

644836

f8e6e6

f20d95

62c7dd

17845e

8783c9

fde553

e6c136

1a9e55

415aee

cc73e7

c4cc71

b148d4

b79ba1

f2aa62

afa848

7fa87f

6f4f42

9ca00f

9e1b7e

44a75b

84623c

d4fae7

42e87b

7f4db8

0b6e07

384e05

fc6f95

f6e97b

a16dd5

0a35b0

196e96

b433b2

41a30b

9c4f5f

34bda8

5cd45f

6b3814

868555

b2f5b4

25e958

86bedb

f45874

e3e800

05327c

bcfaff

b228f2

17d0af

6b18b8

7263d5

fcfdfa

4c8322

046b82

e3f610

c7bc84

0deb5b

d05e52

d9f411

d785ba

d8bf61

37449e

c2b530

2134de

0e217e

91aecf

49d925

b25fe1

abedce

92703b

9c7e05

564230

de66e3

d16d41

31d5eb

c8c79f

4c4462

e8bdf9

7d2909

300846

71f98a

0a8fb8

093417

1c1b94

ce3469

ca7645

d35926

a0ac31

055898

91f9d1

7de955
639d14

9cca0e
327e3e

1be863

41e309

a4ec05

fbcb0f

000000

d724fe

05d0e4

e455eb

7f7583

b1cdbb

ffb1de

95184b

89abec

fd9c7b

73baec

fcb791

a2ca6c

c15758

91bc04

060304

0f2dd3

4111b6

a7c3df

43e19a

045e69

6f18b5

c9bec6

bb5d73

10341c

4eb7e4

f3a2c2

edc282

87ca65

53cd64

09b952

afb230

257e88

3e571b

efa72e

ff4aa3

d4c37b

e39b59

c09b89

9ede17

8d09a4

ea1bae

64eb2f

907d27

3fb986

1b50fb

64234b

a19105

0d5862

d13e44366118

afe43a

918cce

157623

1fb58e

badfa7

e9ebcf

c91e30

285650

f0d2ac

eda03e

9ce227

056328

a0876f

49e351

6c6828

fb290a

4a3c67

5f594c

329d0c

c7cc16

79e88a

95fc8d

806e91

0

1

2

3

4

(a) Memgraph of Holesky network.

(b) Memgraph snippet. Each transaction is represented as an edge connecting the
addresses that it accesses. Each transactions is also assigned a validator rank. The
validator with the lowest rank wins all transactions in a connected component,
which represents a non-commutative set of transactions.

Fig. 2: Memgraph Overview.

Fig. 3: Parallel blocks overview. Each slot supports 2n commuting blocks, ap-
pended in parallel by a parallel validator committee.

parallel validators have a consistent view of the memgraph, enabling them to di-
vide transactions amongst themselves without additional communication beyond
that of synchronizing their memgraphs. Once validators have arrived at the same
view of the memgraph, they execute a deterministic algorithm to partition the
memgraph, ensuring that each validator receives a block of transactions that is
entirely commutative with every other validators’ block. If peer p1 and peer p2
are selected as validators for a particular slot, and p1 observes that p2 has an
inconsistent view of the memgraph, then p1 will recuse itself from block produc-
tion for the corresponding slot. This action protects the integrity of the block
produced by p2 in the circumstance that p2 did not observe an inconsistency
and proceeded with block production.

5.1 Managing a Transaction’s Vetted Status

In order for a parallel committee to partition the memgraph into commutative
sets, they must ensure that their respective views of the memgraph are identical.
To achieve this, we define the seen and vetted statuses for a transaction.

Definition 2. A transaction t is seen by peer p from the perspective of peer p0
if p propagates t to p0.

Definition 3. A transaction t is vetted by a parallel committee from the per-
spective of peer p0 if it has been seen by each validator in the parallel committee
from the perspective of peer p0.

A transaction is only inserted into the memgraph once it has obtained the
vetted status. This enables a shared view of the memgraph, which is necessary
for a deterministic conflict resolution that does not require any additional com-
munication to partition the memgraph.

The seen status for a transaction is updated during the execution client’s
transaction propagation to other peers. A transaction t1 is guaranteed to have
been seen by peer p1 if a peer receives t1 from p1. For this reason, a peer p2
marks t1 as “received” from p1 upon receiving the message of t1 by p1. Since
peer p1 needs confirmation that peer p2 received transaction t1, peer p2 must
send transaction t1 back to peer p1 to serve as an acknowledgement of receiving
transaction t1. Peer p2 marks transaction t1 as “sent” to peer p1 upon sending
t1 back to p1. The acknowledgement message ultimately doubles the number of
messages for transaction propagation by the execution client. However, since the
number of parallel validators is only a small subset of the total number of val-
idators the amount of additional messages generated does not cause congestion
in the execution client communication network.

Peer p2 considers transaction t1 as seen by peer p1 if 1) p1 has sent t1 to p2,
and 2) p2 has has sent t1 back to p1. The transaction propagation of t1 from
p2 to p1 reaches a stopping condition if both of these criteria are satisfied. The
seen transaction status for each peer is maintained in a hashmap, where the
peer is the key and the set of seen transactions is the value. Prior to transaction
selection, each peer consults this hashmap to determine which transactions have
been vetted (i.e. seen by all parallel validators). The vetted transactions are
inserted into the memgraph, where the transactions will then be partitioned for
the parallel validators transaction assignment.

5.2 Deterministic Conflict Resolution for Memgraph Commutative
Partitions

The transactions in the memgraph must be partitioned into N ranks (N equals
the number of parallel validators plus one for the beacon block validator). The
goal is to partition the transactions such that the transactions in each partition
are commutative with transactions in other partitions. Partitioning the mem-
graph for the parallel validators is achieved by using a breadth-first search on the
memgraph to find all connected components. Transactions within a connected
component are non-commutative with each other, but commute with transac-
tions in different connected components. A simple solution is to distribute the
connected components to the parallel validators such that they are assigned all
transactions from the connected component. The challenge is enabling the par-
allel validators to know which connected component they are assigned without
communication. We achieve this by computing the UnsignedBigInteger value
for the transaction hash and applying a modulo operation to distribute the
transactions into a specified number buckets that is greater than or equal to the
number of parallel validators plus one for the beacon block. Each parallel val-
idator is assigned to one or more buckets. A set of parallel validators contending
for each connected component is determined based on the assigned buckets of

the transactions for the connected component. The lowest rank validator from
the set of parallel validators wins the connected component.

Figure 2b shows an example of the memgraph with a view of five trans-
actions. Each transaction is connected to the the addresses in its access list.
The rank representing validator assignment for each transaction is listed next
to its transaction label. The transactions in a connected component are non-
commutative with each other and commutative with transactions in separate
components. The validator with the lowest rank wins the transactions in the
connected component, expressed in boldface print.

Although this strategy is deterministic and requires no communication among
the parallel validators, it is unfair. We incorporate two strategies to mitigate un-
fairness. First, the top N connected components based on number of transactions
are distributed to the N validators such that each validator is only assigned one
of the top N connected components to improve load balancing. The connected
components are sorted in descending order based on number of transactions,
where ties are broken by a function of the connected component’s transaction
hashes. Rank 0 through rank N − 1 are assigned one of the top N connected
components based on the sorted order.

Second, lower ranks are assigned more buckets. The number of buckets is
set to 2N+1, where N is the number of ranks (beacon block validator plus the
parallel validators). The first two buckets (bucket 0 and bucket 1) are assigned
to rank 0. Each subsequent bucket i is computed using Equation 1.

rank = ⌊log2 i⌋ − 1, i ≥ 2 (1)

For example, if there are two parallel validators, there are three ranks and
24 = 16 buckets. Rank 0 is assigned bucket 0 through bucket 3. Rank 1 is as-
signed bucket 4 through bucket 7. Rank 2 is assigned bucket 8 through bucket 15.
Rank 2 is initially assigned more transactions because it is most likely to relin-
quish transactions when contending with another parallel validator for a con-
nected component. After the validator has determined its assigned transactions,
it proceeds with the block building process using only transactions that it has
been assigned.

5.3 Parallel Block Execution

The memgraph naturally partitions pending transactions into commutative sets,
which are deterministically assigned to parallel validators. These commutative
sets lend themselves to concurrent execution. Although EVM support for con-
current execution is not widespread, multiple EVM instances can be instantiated
in parallel to process the blocks created by each parallel validator committee.

Figure 4 gives an overview of parallel block execution. Each parallel EVM
instance is instantiated from a copy of the world-state at the start of the slot,
and executes a single block. After each instance is finished, the resulting world-
states are sequentially merged. If two world-states contain updates to overlap-
ping storage variables, it means that their corresponding blocks are not actually

commutative, and one must be rejected. The block rejection process is further
described in Section 6.1.

Fig. 4: Parallel block execution

In this approach, each EVM acts as a concurrent process, writing changes to
a copy of shared data without regard for synchronization with other concurrent
processes. Afterward, those changes are committed back to the shared database.
This is similar to some Software Transaction Memory (STM) [28] or Optimistic
Concurrency Control (OCC) [14] implementations, which are well studied for
their benefit on multicore hardware when contention is low. Our approach also
utilizes graph-based partitioning to assign conflicting transactions to the same
block, in order to execute them sequentially. Similar to traditional implementa-
tions [7, 18, 25], the intuition is that conflicting transactions should be executed
sequentially by a single process, while non-conflicting transactions are executed
in parallel, with little synchronization overhead. As such, our approach is as
a novel application of state-of-the-art concurrency techniques to decentralized
networks. OCC is an optimistic algorithm, meaning processes perform their op-
erations under the assumption that no concurrent processes will perform any
conflicting operations. In our approach, we nearly guarantee this assumption
will hold true, as our memgraph-based consensus algorithm always distributes
groups of conflicting transactions to the same validator rank, and therefore the
same block.

Load balancing is a concern if transactions in the mempool frequently con-
flict. In this scenario, there would be a low number of unconnected subcompo-
nents in the memgraph, limitting the number of transactions allocated to certain
validator ranks. However, this is not common in the average use case. Eth trans-
fers are commutative if they operate on different addresses, and in Ethereum,
there are hundreds of thousands of wallet addresses active daily [12]. Addition-
ally, due to the gas-based execution system in Ethereum, smart contracts are
typically designed to contain simple logic that uses as little gas as possible. These
contracts can often be parallelized, as analyzed in section 5.4.

Our approach yields a ledger that is highly parallel. In a decentralized ledger,
each block will be executed thousands of times as new nodes synchronize them-
selves with the network. By computing the memgraph at each slot, a small com-
mittee of parallel validators perform a powerful transaction partitioning step
that ensures the efficient execution of transactions by all nodes for the lifetime
of the ledger.

5.4 Static Analysis of Smart Contract Conflicts

Conflicts between smart contract calls can be detected using their conflict lists.
The eth_createAccessList JSON-RPC method can be used to generate the
access list for a smart contract call, which can then be used to produce the
conflict list, but this requires the transaction to be executed in full. In an effort
to avoid this additional computation, we employ static analysis of smart contract
source code to produce conflict lists without executing them. As an example, we
explore a case study of the TetherToken smart contract [31], and Uniswap [32].

Listing 1.1 gives the transfer method of the TetherToken smart contract.
The method takes two parameters as input, _to and _value. On lines 13 and 14,
the state variable balances is updated at indices corresponding to msg.sender and
_to. Furthermore, the balance of owner is updated conditionally on line 16. Since
branching is only evaluated at runtime, the conflict list includes any world state
element that is read/written anywhere in the contract, regardless of branching.

In this example, the conflict list for transfer(_to, _value) is {bal-
ances[msg.sender], balances[_to], balances[owner], owner}. Note that by reading
the storage variable owner on line 16, this code creates a single point of con-
tention about which all calls to transfer will conflict. This type of problem
can be resolved using traditional strategies for concurrent programming, such
as by treating balances[owner] as a thread-local accumulator. However, as it
stands, calls to transfer cannot commute. This does not necessarily prevent
transfer calls from commuting with other methods within the TetherToken
smart contract.

Listing 1.2 gives the approve method of the TetherToken smart contract.
This method only makes changes to the shared allowed map, using msg.sender
and _spender as keys. Both of these keys are local to the method call, and will
therefore be known to all parallel validators. As a result, the conflict list for
approve(_spender, _value) is simply {allowed[msg.sender][_spender]}. This
enables a high degree of parallelism between calls to approve, as any two calls

1 address public owner ;
2 mapping(address => uint) public ba lances ;
3 event Trans fe r (
4 address indexed from , address indexed to , uint value) ;
5 . . .
6 function t r a n s f e r (address _to , uint _value)
7 public onlyPayloadSize (2 ∗ 32) {
8 uint f e e = (_value . mul (bas i sPo int sRate)) . d iv (10000) ;
9 i f (f e e > maximumFee) {

10 f e e = maximumFee ;
11 }
12 uint sendAmount = _value . sub (f e e) ;
13 ba lances [msg . sender]= ba lances [msg . sender] . sub (_value) ;
14 ba lances [_to] = ba lances [_to] . add (sendAmount) ;
15 i f (f e e > 0) {
16 ba lances [owner] = ba lances [owner] . add (f e e) ;
17 Trans fe r (msg . sender , owner , f e e) ;
18 }
19 Trans fe r (msg . sender , _to , sendAmount) ;
20 }

Listing 1.1: TetherToken transfer method

1 mapping (address=> mapping (address=> uint)) public al lowed ;
2 . . .
3 function approve (address _spender , uint _value)
4 public onlyPayloadSize (2 ∗ 32) {
5 require (! ((_value != 0)
6 && (al lowed [msg . sender] [_spender] != 0))) ;
7 a l lowed [msg . sender] [_spender] = _value ;
8 Approval (msg . sender , _spender , _value) ;
9 }

Listing 1.2: TetherToken approve method

1 mapping(address => uint) public balanceOf ;
2 . . .
3 function t r a n s f e r (address to , uint value) private {
4 balanceOf [msg . sender] = balanceOf [msg . sender] . sub (va lue) ;
5 balanceOf [to] = balanceOf [to] . add (value) ;
6 emit Trans fe r (from , to , va lue) ;
7 }

Listing 1.3: Uniswap transfer method

with a unique msg.sender and _spender will commute. Furthermore, calls to
approve can be executed in parallel with calls to transfer so long as they
originate from unique msg.sender addresses.

Listing 1.3 gives the transfer method of the Uniswap smart contract. The
method takes as input, msg.sender, to, and value. On lines 4 and 5, the state
variable balanceOf is updated at indices corresponding to msg.sender and to.
Unlike TetherToken, this contract does not have a single point of contention.
Only msg.sender and to are used as keys, both of which are local. The conflict
list for this method would be {balanceOf[msg.sender], balanceOf[to]}. Any two
Uniswap transfer calls can be executed in parallel so long as they have different
msg.sender and to fields.

In cases like TetherToken and Uniswap, the conflict list will closely resemble
the average-case access list. Validators can save substantial amounts of compu-
tation time by retrieving conflict lists through static analysis wherever possible,
rather than through the eth_createAccessList JSON-RPC method.

6 Protocol Enforcement

The Ethpar protocol relies on the commutativity of blocks that occupy a shared
slot. Due to the presence of inter-transaction conflicts, validators sharing a slot
are partially restricted in their freedom to select transactions from the mempool.
This is necessary to preserve the commutativity of all blocks published by the
parallel committee at a slot.

Like all PoS blockchains, Ethpar enforces the protocol by punishing viola-
tors with financial penalties. In Ethereum, meting out these penalties is called
“slashing” [30]. The maximum penalty for an individual validator is to lose the
entire stake, currently 32 ethers. Rewards and penalties are described in detail
in Ethereum’s documentation [30].

In addition to those already implemented in Ethereum, Ethpar has two ad-
ditional actions that are subject to penalty for violations of the parallel block
commutativity rules. These are (a) Boosting - a violation due to including a
transaction in the block that was not in the memgraph, and (b) Censorship - a
violation where the builder excludes a transaction that should have been in the
block according to the memgraph of vetted transactions.

6.1 Boosting

In an effort to collect more fees, a validator can select their transactions from
a version of the memgraph that is not fully synchronized with their parallel
committee. This is called boosting and is a violation of the Ethpar protocol.
Boosting can lead to unforeseen conflicts between the blocks published by that
committee. To prevent this occurrence, validators include a memgraph hash field
in their published block, which contains the hash of the memgraph after all
transactions were vetted for the current slot. All honest validators in a parallel
committee will publish blocks with matching memgraph hash fields so long as
their memgraphs are equivalent, as described in Section 5.1. The memgraph at
slot n can be reconstructed by inserting each transaction from each block at slot
n into a freshly initialized memgraph. In the case that a validator produces a
conflict through malicious behavior, the network will be able to identify which
validator is at fault by checking the assigned rank of each transaction in the
reconstructed memgraph for slot n.

The penalty for publishing a block that does not commute with the majority
of blocks at its slot is slashing. The non-commuting block is removed and the
transactions within return to the mempool.

6.2 Censorship

It is generally agreed that censorship of transactions at the network level is
undesirable [13, 23]. Solving the censorship problem on Ethereum is a current
research topic, as discussed in Section 2.3. The practice of transaction censor-
ship is a threat to decentralization because it enables an adversary to control
which transactions to include in blocks. The detection of censorship is performed
in a similar manner as described in Section 6.1, where the memgraph hash is
checked for equivalence with the other parallel validators. If the equivalence
check passes, the memgraph is reconstructed and the deterministic conflict res-
olution algorithm of Section 5.2 is applied to determine if each block contains
the expected transactions based on the associated rank for slot n.

7 Conclusion

Ethpar leverages transaction commutativity to deliver enhanced block construc-
tion through parallel blocks. The deterministic conflict resolution scheme for
handling conflicts among transaction assignments per block is made possible
through a synchronized memgraph that contains only transactions with the vet-
ted status (i.e. transactions that have been seen by all parallel validators). Each
parallel validator partitions the memgraph using the deterministic conflict res-
olution scheme and selects transactions for their block based on their assigned
rank. The identification of conflicts in the memgraph is dependent on knowing
which addresses a transaction accesses. To account for state variables in a smart
contract, Ethpar uses static analysis of smart contract source code to efficiently
produce conflict lists without smart contract execution.

References

1. Baird, L., Harmon, M., Madsen, P.: Hedera: A public hashgraph network & gov-
erning council. White Paper 1(1), 9–10 (2019)

2. Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity: Extending bit-
coin’s proof of work via proof of stake [extended abstract]. ACM SIGMETRICS
Performance Evaluation Review 42(3), 34–37 (2014)

3. Bhalla, A.: Top cryptocurrencies with their high transaction
speeds. https://www.blockchain-council.org/cryptocurrency/
top-cryptocurrencies-with-their-high-transaction-speeds/, accessed:
2024-06-07

4. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. white paper 3(37), 2–1 (2014)

5. Chakravarty, M.M., Coretti, S., Fitzi, M., Gaži, P., Kant, P., Kiayias, A., Russell,
A.: Fast isomorphic state channels. In: Financial Cryptography and Data Security:
25th International Conference, FC 2021, Virtual Event, March 1–5, 2021, Revised
Selected Papers, Part II 25. pp. 339–358. Springer (2021)

6. Cook, V., Painter, Z., Peterson, C., Dechev, D.: Read-uncommitted transactions
for smart contract performance. In: 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS). pp. 1960–1970. IEEE (2019)

7. Curino, C., Jones, E.P.C., Zhang, Y., Madden, S.R.: Schism: a workload-driven ap-
proach to database replication and partitioning. Very Large Data Base Endowment
Inc.(VLDB Endowment) (2010)

8. Dang, H., Dinh, T.T.A., Loghin, D., Chang, E.C., Lin, Q., Ooi, B.C.: Towards
scaling blockchain systems via sharding. In: Proceedings of the 2019 international
conference on management of data. pp. 123–140 (2019)

9. Default for ‘blockparams.maxbytes’ consensus parameter may increase block times
and affect consensus participation. https://github.com/cometbft/cometbft/
security/advisories/GHSA-hq58-p9mv-338c, accessed: 2024-06-10

10. Eip-2930: Optional access lists. https://eips.ethereum.org/EIPS/eip-2930, ac-
cessed: 2024-06-26

11. Ethereum accounts. https://ethereum.org/en/whitepaper/
#ethereum-accounts, accessed: 2024-9-16

12. Ethereum daily active addresses. https://ycharts.com/indicators/ethereum_
daily_active_addresses, accessed: 2024-09-11

13. Fox, E., Pai, M., Resnick, M.: Censorship resistance in on-chain auctions. arXiv
preprint arXiv:2301.13321 (2023)

14. Härder, T.: Observations on optimistic concurrency control schemes. Information
Systems 9(2), 111–120 (1984)

15. Hbar. https://hedera.com/hbar, accessed: 2024-06-07
16. Hoskinson, C.: Why we are building cardano. https://whitepaper.io/document/

581/cardano-whitepaper, accessed: 2024-06-07
17. Jourenko, M., Larangeira, M., Tanaka, K.: Interhead hydra: Two heads are better

than one. In: The International Conference on Mathematical Research for Block-
chain Economy. pp. 187–212. Springer (2022)

18. Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A., Zdonik, S., Jones,
E.P., Madden, S., Stonebraker, M., Zhang, Y., et al.: H-store: a high-performance,
distributed main memory transaction processing system. Proceedings of the VLDB
Endowment 1(2), 1496–1499 (2008)

https://www.blockchain-council.org/cryptocurrency/top-cryptocurrencies-with-their-high-transaction-speeds/
https://www.blockchain-council.org/cryptocurrency/top-cryptocurrencies-with-their-high-transaction-speeds/
https://github.com/cometbft/cometbft/security/advisories/GHSA-hq58-p9mv-338c
https://github.com/cometbft/cometbft/security/advisories/GHSA-hq58-p9mv-338c
https://eips.ethereum.org/EIPS/eip-2930
https://ethereum.org/en/whitepaper/#ethereum-accounts
https://ethereum.org/en/whitepaper/#ethereum-accounts
https://ycharts.com/indicators/ethereum_daily_active_addresses
https://ycharts.com/indicators/ethereum_daily_active_addresses
https://hedera.com/hbar
https://whitepaper.io/document/581/cardano-whitepaper
https://whitepaper.io/document/581/cardano-whitepaper

19. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: Annual international cryptology conference.
pp. 357–388. Springer (2017)

20. Kjaerstad, M.: Maximal extractable value (mev). https://ethereum.org/en/
developers/docs/mev/, accessed: 2024-06-10

21. Labs, S.: Sei: The layer 1 for trading. https://github.com/sei-protocol/
sei-chain/blob/main/whitepaper/Sei_Whitepaper.pdf, accessed: 2024-06-07

22. Liu, Y., Liu, J., Salles, M.A.V., Zhang, Z., Li, T., Hu, B., Henglein, F., Lu, R.:
Building blocks of sharding blockchain systems: Concepts, approaches, and open
problems. Computer Science Review 46, 100513 (2022)

23. Neuder, M., Resnick, M.: Concurrent block proposers in ethereum. https:
//ethresear.ch/t/concurrent-block-proposers-in-ethereum/18777/1, ac-
cessed: 2024-09-05

24. Patairya, D.K.: What is the ethereum dencun upgrade, and
why is it important? https://cointelegraph.com/explained/
what-is-the-ethereum-dencun-upgrade-and-why-is-it-important, accessed:
2024-06-10

25. Prasaad, G., Cheung, A., Suciu, D.: Handling highly contended oltp workloads
using fast dynamic partitioning. In: Proceedings of the 2020 ACM SIGMOD In-
ternational Conference on Management of Data. pp. 527–542 (2020)

26. Raskin, M., Yermack, D.: Digital currencies, decentralized ledgers and the future of
central banking. In: Research handbook on central banking, pp. 474–486. Edward
Elgar Publishing (2018)

27. Sei. https://www.sei.io/, accessed: 2024-06-07
28. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the

fourteenth annual ACM symposium on Principles of distributed computing. pp.
204–213 (1995)

29. Skidanov, A., Polosukhin, I., Wang, B.: Nightshade: Near protocol sharding design
2.0. https://discovery-domain.org/papers/nightshade.pdf, accessed: 2024-09-
12

30. Smith, C.: Proof-of-stake rewards and penalties. https://ethereum.org/
en/developers/docs/consensus-mechanisms/pos/rewards-and-penalties/, ac-
cessed: 2024-09-06

31. Tethertoken smart contract, etherscan. https://etherscan.io/address/
0xdac17f958d2ee523a2206206994597c13d831ec7#code, accessed: 2024-08-13

32. Uniswap smart contract, github. https://github.com/Uniswap/v2-core, ac-
cessed: 2024-08-15

33. Sharding faq. https://vitalik.eth.limo/general/2017/12/31/sharding_faq.
html, accessed: 2024-09-11

34. Why sharding is great: demystifying the technical properties. https://vitalik.
eth.limo/general/2021/04/07/sharding.html, accessed: 2024-09-11

35. What is block time in blockchain? https://www.nervos.org/knowledge-base/
block_time_in_blockchain_(explainCKBot), accessed: 2024-06-07

36. What is mev-boost? https://docs.flashbots.net/flashbots-mev-boost/
introduction, accessed: 2024-06-10

37. What is transactions per second (tps)? https://chainspect.app/blog/
transactions-per-second-tps, accessed: 2024-06-07

38. Yakovenko, A.: Solana: A new architecture for a high performance blockchain v0.
8.13. Whitepaper (2018)

39. Yermack, D.: Corporate governance and blockchains. Review of finance 21(1), 7–31
(2017)

https://ethereum.org/en/developers/docs/mev/
https://ethereum.org/en/developers/docs/mev/
https://github.com/sei-protocol/sei-chain/blob/main/whitepaper/Sei_Whitepaper.pdf
https://github.com/sei-protocol/sei-chain/blob/main/whitepaper/Sei_Whitepaper.pdf
https://ethresear.ch/t/concurrent-block-proposers-in-ethereum/18777/1
https://ethresear.ch/t/concurrent-block-proposers-in-ethereum/18777/1
https://cointelegraph.com/explained/what-is-the-ethereum-dencun-upgrade-and-why-is-it-important
https://cointelegraph.com/explained/what-is-the-ethereum-dencun-upgrade-and-why-is-it-important
https://www.sei.io/
https://discovery-domain.org/papers/nightshade.pdf
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/rewards-and-penalties/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/rewards-and-penalties/
https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7#code
https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7#code
https://github.com/Uniswap/v2-core
https://vitalik.eth.limo/general/2017/12/31/sharding_faq.html
https://vitalik.eth.limo/general/2017/12/31/sharding_faq.html
https://vitalik.eth.limo/general/2021/04/07/sharding.html
https://vitalik.eth.limo/general/2021/04/07/sharding.html
https://www.nervos.org/knowledge-base/block_time_in_blockchain_(explainCKBot)
https://www.nervos.org/knowledge-base/block_time_in_blockchain_(explainCKBot)
https://docs.flashbots.net/flashbots-mev-boost/introduction
https://docs.flashbots.net/flashbots-mev-boost/introduction
https://chainspect.app/blog/transactions-per-second-tps
https://chainspect.app/blog/transactions-per-second-tps

40. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: Scaling blockchain via full
sharding. In: Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security. pp. 931–948 (2018)

	Ethpar: Parallel Ethereum

